
Cuckoo Sandbox Book
Release 1.0

Cuckoo Sandbox

January 09, 2014

CONTENTS

1 Having troubles? 3
1.1 FAQ . 3

2 Contents 7
2.1 Introduction . 7
2.2 Installation . 10
2.3 Usage . 24
2.4 Customization . 44
2.5 Development . 62
2.6 Final Remarks . 65

Index 69

i

ii

Cuckoo Sandbox Book, Release 1.0

Cuckoo Sandbox is an Open Source software for automating analysis of suspicious files. To do so it makes use of
custom components that monitor the behavior of the malicious processes while running in an isolated environment.

This guide will explain how to set up Cuckoo, use it and customize it.

CONTENTS 1

Cuckoo Sandbox Book, Release 1.0

2 CONTENTS

CHAPTER

ONE

HAVING TROUBLES?

If you’re having troubles you might want to check out the FAQ it might already have the answers to your questions.

1.1 FAQ

Frequently Asked Questions:

• Can I analyze URLs with Cuckoo?

• Can I use Volatility with Cuckoo?

• After upgrade Cuckoo stops to work

• Cuckoo stumbles and produces some error I don’t understand

1.1.1 General Questions

Can I analyze URLs with Cuckoo?

Yes you can. Since version 0.5 URLs are natively supported by Cuckoo.

Can I use Volatility with Cuckoo?

Cuckoo 0.5 introduces support for optional full memory dumps, which are created at the end of the analysis process.
You can use these memory dumps to perform additional memory forensic analysis with Volatility.

Please also consider that we don’t particularly encourage this: since Cuckoo employs some rootkit-like technologies
to perform its operations, the results of a forensic analysis would be polluted by the sandbox’s components.

1.1.2 Troubleshooting

After upgrade Cuckoo stops to work

Probably you upgraded it in a wrong way. It’s not a good practice to rewrite the files due to Cuckoo’s complexity and
quick evolution.

Please follow the upgrade steps described in Upgrade from a previous release.

3

http://code.google.com/p/volatility/

Cuckoo Sandbox Book, Release 1.0

Cuckoo stumbles and produces some error I don’t understand

Cuckoo is a young and still evolving project, it’s possible that you encounter some problems while running it, but
before you rush into sending emails to everyone make sure you read what follows.

Cuckoo is not meant to be a point-and-click tool: it’s designed to be a highly customizable and configurable solution
for somewhat experienced users and malware analysts.

It requires you to have a decent understanding of your operating systems, Python, the concepts behind virtualization
and sandboxing. We try to make it as easy to use as possible, but you have to keep in mind that it’s not a technology
meant to be accessible to just anyone.

That being said, if a problem occurs you have to make sure that you did everything you could before asking for time
and effort from our developers and users. We just can’t help everyone, we have limited time and it has to be dedicated
to the development and fixing of actual bugs.

• We have extensive documentation, read it carefully. You can’t just skip parts of it.

• We have a mailing list archive, search through it for previous threads where your same problem could have been
already addressed and solved.

• We have a Community platform for asking questions, use it.

• We have lot of users producing content on Internet, Google it.

• Spend some of your own time trying fixing the issues before asking ours, you might even get to learn and
understand Cuckoo better.

Long story short: use the existing resources, put some efforts into it and don’t abuse people.

If you still can’t figure out your problem, you can ask help on our online communities (see Final Remarks). Make sure
when you ask for help to:

• Use a clear and explicit title for your emails: “I have a problem”, “Help me” or “Cuckoo error” are NOT good
titles.

• Explain in details what you’re experiencing. Try to reproduce several times your issue and write down all steps
to achieve that.

• Use no-paste services and link your logs, configuration files and details on your setup.

• Eventually provide a copy of the analysis that generated the problem.

Check and restore current snapshot with KVM

If something goes wrong with virtual machine it’s best practice to check curent snapshot status. You can do that with
the following:

$ virsh snapshot-current "<Name of VM>"

If you got a long XML as output your current snapshot is configured and you can skip the rest of this chapter; anyway
if you got an error like the following your current snapshot is broken:

$ virsh snapshot-current "<Name of VM>"
error: domain ’<Name of VM>’ has no current snapshot

To fix and create a current snapshot firt list all machine’s snapshots:

$ virsh snapshot-list "<Name of VM>"
Name Creation Time State
--
1339506531 2012-06-12 15:08:51 +0200 running

4 Chapter 1. Having troubles?

http://community.cuckoosandbox.org
http://www.google.com

Cuckoo Sandbox Book, Release 1.0

Choose one snapshot name and set it as current:

$ snapshot-current "<Name of VM>" --snapshotname 1339506531
Snapshot 1339506531 set as current

Now the virtual machine state is fixed.

Check and restore current snapshot with VirtualBox

If something goes wrong with virtual it’s best practice to check the virtual machine status and the curent snapshot.
First of all check the virtual machine status with the following:

$ VBoxManage showvminfo "<Name of VM>" | grep State
State: powered off (since 2012-06-27T22:03:57.000000000)

If the state is “powered off” you can go ahead with the next check, if the state is “aborted” or something else you have
to restore it to “powered off” before:

$ VBoxManage controlvm "<Name of VM>" poweroff

With the following check the current snapshots state:

$ VBoxManage snapshot "<Name of VM>" list --details
Name: s1 (UUID: 90828a77-72f4-4a5e-b9d3-bb1fdd4cef5f)

Name: s2 (UUID: 97838e37-9ca4-4194-a041-5e9a40d6c205) *

If you have a snapshot marked with a star “*” your snapshot is ready, anyway you have to restore the current snapshot:

$ VBoxManage snapshot "<Name of VM>" restorecurrent

Unable to bind result server error

At Cuckoo startup if you get an error message like this one:

2014-01-07 18:42:12,686 [root] CRITICAL: CuckooCriticalError: Unable to bind result server on 192.168.56.1:2042: [Errno 99] Cannot assign requested address

It means that Cuckoo is unable to start the result server on the IP address written in cuckoo.conf (or in machinery.conf
if you are using the resultserver_ip option inside). This usually happen when you start Cuckoo without bringing up
the virtual interface associated with the result server IP address. You can bring it up manually, it depends from one
virtualization software to another, but if you don’t know how to do, a good trick is to manually start and stop an
analysis virtual machine, this will bring virtual networking up.

Otherwise you can ask the developers and/or other Cuckoo users, see Join the discussion.

1.1. FAQ 5

Cuckoo Sandbox Book, Release 1.0

6 Chapter 1. Having troubles?

CHAPTER

TWO

CONTENTS

2.1 Introduction

This is an introductory chapter to Cuckoo Sandbox. It explains some basic malware analysis concepts, what’s Cuckoo
and how it can fit in malware analysis.

2.1.1 Sandboxing

As defined by Wikipedia, “in computer security, a sandbox is a security mechanism for separating running programs.
It is often used to execute untested code, or untrusted programs from unverified third-parties, suppliers, untrusted
users and untrusted websites.”.

This concept applies to malware analysis’ sandboxing too: our goal is to run an unknown and untrusted application or
file inside an isolated environment and get information and what it does.

Malware sandboxing is a practical application of the dynamical analysis approach: instead of statically analyze the
binary file, it gets executed and monitored in real-time.

This approach obviously has pros and cons, but it’s a valuable technique to obtain additional details on the malware,
such as its network behavior. Therefore it’s a good practice to perform both static and dynamic analysis while inspect-
ing a malware, in order to gain a deeper understanding of it.

Simple as it is, Cuckoo is a tool that allows you to perform sandboxed malware analysis.

Using a Sandbox

Before starting installing, configuring and using Cuckoo you should take some time to think on what you want to
achieve with it and how.

Some questions you should ask yourself:

• What kind of files do I want to analyze?

• Which volumes of analyses do I want to be able to handle?

• Which platform do I want to use to run my analysis on?

• What kind of information I want about the file?

The creation of the isolated environment (the virtual machine) is probably the most critical and important part of a
sandbox deployment: it should be done carefully and with proper planning.

Before getting hands on the virtualization product of your choice, you should already have a design plan that defines:

• Which operating system, language and patching level to use.

7

http://en.wikipedia.org/wiki/Sandbox_%28computer_security%29

Cuckoo Sandbox Book, Release 1.0

• Which software to install and which versions (particularly important when analyzing exploits).

Consider that automated malware analysis is not deterministic and its success might depend on a trillion of factors:
you are trying to make a malware run in a virtualized system as it would do on a native one, which could be tricky to
achieve and could not always succeed. Your goal should be both to create a system able to handle all the requirements
you need as well as try to make it as realistic as possible.

For example you could consider leaving some intentional traces of normal usage, such as browsing history, cookies,
documents, images etc. If a malware is designed to operate, manipulate or steal such files you’ll be able to notice it.

Virtualized operating systems usually carry a lot of traces with them that makes them very easily detectable. Even if
you shouldn’t overestimate this problem, you might want to take care of this and try to hide as many virtualization
traces as possible. There is a lot of literature on Internet regarding virtualization detection techniques and countermea-
sures.

Once you finished designing and preparing the prototype of system you want, you can proceed creating it and de-
ploying it. You will be always in time to change things or slightly fix them, but remember that good planning at the
beginning always means less troubles in the long run.

2.1.2 What is Cuckoo?

Cuckoo is an open source automated malware analysis system.

It’s used to automatically run and analyze files and collect comprehensive analysis results that outline what the malware
does while running inside an isolated Windows operating system.

It can retrieve the following type of results:

• Traces of win32 API calls performed by all processes spawned by the malware.

• Files being created, deleted and downloaded by the malware during its execution.

• Memory dumps of the malware processes.

• Network traffic trace in PCAP format.

• Screenshots of Windows desktop taken during the execution of the malware.

• Full memory dumps of the machines.

Some History

Cuckoo Sandbox started as a Google Summer of Code project in 2010 within The Honeynet Project. It was originally
designed and developed by Claudio “nex” Guarnieri, who is still the main developer and coordinates all efforts from
joined developers and contributors.

After initial work during the summer 2010, the first beta release was published on Feb. 5th 2011, when Cuckoo was
publicly announced and distributed for the first time.

In March 2011, Cuckoo has been selected again as a supported project during Google Summer of Code 2011 with The
Honeynet Project, during which Dario Fernandes joined the project and extended its functionalities.

On November 2nd 2011 Cuckoo the release of its 0.2 version to the public as the first real stable release. On late
November 2011 Alessandro “jekil” Tanasi joined the team expanding Cuckoo’s processing and reporting functionali-
ties.

On December 2011 Cuckoo v0.3 gets released and quickly hits release 0.3.2 in early February.

In late January 2012 we opened Malwr.com, a free and public running Cuckoo Sandbox instance provided with a full
fledged interface through which people can submit files to be analysed and get results back.

8 Chapter 2. Contents

http://www.google-melange.com
http://www.honeynet.org
http://malwr.com

Cuckoo Sandbox Book, Release 1.0

In March 2012 Cuckoo Sandbox wins the first round of the Magnificent7 program organized by Rapid7.

During the Summer of 2012 Jurriaan “skier” Bremer joined the development team, refactoring the Windows analysis
component sensibly improving the analysis’ quality.

On 24th July 2012, Cuckoo Sandbox 0.4 is released.

On 20th December 2012, Cuckoo Sandbox 0.5 “To The End Of The World” is released.

On 15th April 2013 we released Cuckoo Sandbox 0.6, shortly after having launched the second version of Malwr.com.

On 1st August 2013 Claudio “nex” Guarnieri, Jurriaan “skier” Bremer and Mark “rep” Schloesser presented Mo’
Malware Mo’ Problems - Cuckoo Sandbox to the rescue at Black Hat Las Vegas.

On 9th January 2014, Cuckoo Sandbox 1.0 is released.

Use Cases

Cuckoo is designed to be used both as a standalone application as well as to be integrated in larger frameworks, thanks
to its extremely modular design.

It can be used to analyze:

• Generic Windows executables

• DLL files

• PDF documents

• Microsoft Office documents

• URLs and HTML files

• PHP scripts

• CPL files

• Visual Basic (VB) scripts

• ZIP files

• Java JAR

• Almost anything else

Thanks to its modularity and powerful scripting capabilities, there’s not limit to what you can achieve with Cuckoo.

For more information on customizing Cuckoo, see the Customization chapter.

Architecture

Cuckoo Sandbox consists of a central management software which handles sample execution and analysis.

Each analysis is launched in a fresh and isolated virtual machine. Cuckoo’s infrastructure is composed by an Host
machine (the management software) and a number of Guest machines (virtual machines for analysis).

The Host runs the core component of the sandbox that manages the whole analysis process, while the Guests are the
isolated environments where the malwares get actually safely executed and analyzed.

The following picture explains Cuckoo’s main architecture:

2.1. Introduction 9

http://community.rapid7.com/community/open_source/magnificent7
http://www.rapid7.com
http://malwr.com
https://media.blackhat.com/us-13/US-13-Bremer-Mo-Malware-Mo-Problems-Cuckoo-Sandbox-Slides.pdf
https://media.blackhat.com/us-13/US-13-Bremer-Mo-Malware-Mo-Problems-Cuckoo-Sandbox-Slides.pdf

Cuckoo Sandbox Book, Release 1.0

Although recommended setup is GNU/Linux (Ubuntu preferrably) as host and Windows XP Service Pack 3 as guest,
Cuckoo proved to work smoothly also on Mac OS X as host and Windows Vista and Windows 7 as guests.

Obtaining Cuckoo

Cuckoo can be downloaded from the official website, where the stable and packaged releases are distributed, or can
be cloned from our official git repository.

Warning: While being more updated, including new features and bugfixes, the version available
in the git repository should be considered an under development stage. Therefore its stability is not
guaranteed and it most likely lacks updated documentation.

2.1.3 License

Cuckoo Sandbox license is shipped with Cuckoo and contained in “LICENSE” file inside “docs” folder.

2.1.4 Disclaimer

Cuckoo is distributed as it is, in the hope that it will be useful, but without any warranty neither the implied mer-
chantability or fitness for a particular purpose.

Whatever you do with this tool is uniquely your own responsibility.

2.2 Installation

This chapter explains how to install Cuckoo.

10 Chapter 2. Contents

http://www.cuckoosandbox.org
http://github.com/cuckoobox/cuckoo

Cuckoo Sandbox Book, Release 1.0

Note: This documentation refers to Host as the underlying operating systems on which you are running Cuckoo
(generally being a GNU/Linux distribution) and to Guest as the Windows virtual machine used to run the isolated
analysis.

2.2.1 Preparing the Host

Even though it’s reported to run on other operating systems too, Cuckoo is originally supposed to run on a GNU/Linux
native system. For the purpose of this documentation, we chose latest Ubuntu LTS as reference system for the
commands examples.

Requirements

Before proceeding on configuring Cuckoo, you’ll need to install some required software and libraries.

Installing Python libraries

Cuckoo host components are completely written in Python, therefore make sure to have an appropriate version in-
stalled. For current release Python 2.7 is preferred.

Install Python on Ubuntu:

$ sudo apt-get install python

In order to properly function, Cuckoo requires SQLAlchemy and Python BSON to be installed.

Install with apt-get:

$ sudo apt-get install python-sqlalchemy python-bson

Install with pip:

$ sudo pip install sqlalchemy bson

There are other optional dependencies that are mostly used by modules and utilities. The following libraries are not
strictly required, but their installation is recommended:

• Dpkt (Highly Recommended): for extracting relevant information from PCAP files.

• Jinja2 (Highly Recommended): for rendering the HTML reports and the web interface.

• Magic (Optional): for identifying files’ formats (otherwise use “file” command line utility)

• Pydeep (Optional): for calculating ssdeep fuzzy hash of files.

• Pymongo (Optional): for storing the results in a MongoDB database.

• Yara and Yara Python (Optional): for matching Yara signatures (use release 1.7 or above or the svn version).

• Libvirt (Optional): for using the KVM machine manager.

• Bottlepy (Optional): for using the api.py or web.py utility (use release 0.10 or above).

• Django (Optional): for using the web interface (use release 1.5 or above).

• Pefile (Optional): used for static analysis of PE32 binaries.

• Volatility (Optional): used for forensic analysis on memory

• MAEC Python bindings (Optional): used for MAEC reporting (use release 4.0 or above).

2.2. Installation 11

http://code.google.com/p/dpkt/
http://jinja.pocoo.org/docs/
http://www.darwinsys.com/file/
https://github.com/kbandla/pydeep
http://pypi.python.org/pypi/pymongo/
http://code.google.com/p/yara-project/
http://www.libvirt.org
http://www.bottlepy.org
https://www.djangoproject.com/
http://code.google.com/p/pefile/
http://code.google.com/p/volatility/
https://pypi.python.org/pypi/maec

Cuckoo Sandbox Book, Release 1.0

• Chardet (Optional): used for detecting string encoding.

Some of them are already packaged in Debian/Ubuntu and can be installed with the following command:

$ sudo apt-get install python-dpkt python-jinja2 python-magic python-pymongo python-libvirt python-bottle python-pefile python-chardet

Except for python-magic, python-dpkt and python-libvirt, the others can be installed through pip too:

$ sudo pip install jinja2 pymongo bottle pefile maec django chardet

Yara and Pydeep will have to be installed manually, so please refer to their websites.

If want to use KVM it’s packaged too and you can install it with the following command:

$ sudo apt-get install qemu-kvm libvirt-bin ubuntu-vm-builder bridge-utils

Virtualization Software

Despite heavily relying on VirtualBox in the past, Cuckoo has moved on being architecturally independent from the
virtualization software. As you will see throughout this documentation, you’ll be able to define and write modules to
support any software of your choice.

For the sake of this guide we will assume that you have VirtualBox installed (which still is the default option), but this
does not affect anyhow the execution and general configuration of the sandbox.

You are completely responsible for the choice, configuration and execution of your virtualization software, therefore
please hold from asking help on it in our channels and lists: refer to the software’s official documentation and support.

Assuming you decide to go for VirtualBox, you can get the proper package for your distribution at the official download
page. The installation of VirtualBox is not in the purpose of this documentation, if you are not familiar with it please
refer to the official documentation.

Installing Tcpdump

In order to dump the network activity performed by the malware during execution, you’ll need a network sniffer
properly configured to capture the traffic and dump it to a file.

By default Cuckoo adopts tcpdump, the prominent open source solution.

Install it on Ubuntu:

$ sudo apt-get install tcpdump

Tcpdump requires root privileges, but since you don’t want Cuckoo to run as root you’ll have to set specific Linux
capabilities to the binary:

$ sudo setcap cap_net_raw,cap_net_admin=eip /usr/sbin/tcpdump

You can verify the results of last command with:

$ getcap /usr/sbin/tcpdump
/usr/sbin/tcpdump = cap_net_admin,cap_net_raw+eip

If you don’t have setcap installed you can get it with:

$ sudo apt-get install libcap2-bin

Or otherwise (not recommended) do:

12 Chapter 2. Contents

https://pypi.python.org/pypi/chardet
http://www.virtualbox.org
https://www.virtualbox.org/wiki/Linux_Downloads
https://www.virtualbox.org/wiki/Linux_Downloads
https://www.virtualbox.org/wiki/Documentation
http://www.tcpdump.org

Cuckoo Sandbox Book, Release 1.0

$ sudo chmod +s /usr/sbin/tcpdump

Installing Volatility

Volatility is an optional tool to do forensic analysis on memory dumps. In combination with Cuckoo, it can automat-
ically provide additional visibility into deep modifications in the operating system as well as detect the presence of
rootkit technology that escaped the monitoring domain of Cuckoo’s analyzer.

In order to function properly, Cuckoo requires at least version 2.3 of Volatility. You can get it from the official
repository.

See the volatility documentation for detailed instructions on how to install it.

Installing Cuckoo

Proceed with download and installation. Read What is Cuckoo? to learn where you can obtain a copy of the sandbox.

Create a user

You either can run Cuckoo from your own user or create a new one dedicated just to your sandbox setup. Make sure
that the user that runs Cuckoo is the same user that you will use to create and run the virtual machines, otherwise
Cuckoo won’t be able to identify and launch them.

Create a new user:

$ sudo adduser cuckoo

If you’re using VirtualBox, make sure the new user belongs to the “vboxusers” group (or the group you used to run
VirtualBox):

$ sudo usermod -G vboxusers cuckoo

If you’re using KVM or any other libvirt based module, make sure the new user belongs to the “libvirtd” group (or the
group your Linux distribution uses to run libvirt):

$ sudo usermod -G libvirtd cuckoo

Install Cuckoo

Extract or checkout your copy of Cuckoo to a path of your choice and you’re ready to go ;-).

Configuration

Cuckoo relies on six main configuration files:

• cuckoo.conf : for configuring general behavior and analysis options.

• auxiliary.conf : for enabling and configuring auxiliary modules.

• <machinery>.conf : for defining the options for your virtualization software (the file has the same name of
the machinery module you choose in cuckoo.conf).

• memory.conf : Volatility configuration

2.2. Installation 13

http://code.google.com/p/volatility/
http://code.google.com/p/volatility/

Cuckoo Sandbox Book, Release 1.0

• processing.conf : for enabling and configuring processing modules.

• reporting.conf : for enabling or disabling report formats.

To get Cuckoo working you have to edit auxiliary.conf :, cuckoo.conf and <machinery>.conf at least.

cuckoo.conf

The first file to edit is conf/cuckoo.conf, it contains the generic configuration options that you might want to verify
before launching Cuckoo.

The file is largely commented and self-explainatory, but some of the options you might want to pay more attention to
are:

• machinery in [cuckoo]: this defines which Machinery module you want Cuckoo to use to interact with
your analysis machines. The value must be the name of the module without extention.

• ip and port in [resultserver]: defines the local IP address and port that Cuckoo is going to use to bind
the result server on. Make sure this is aligned with the network configuration of your analysis machines, or they
won’t be able to return the collected results.

• connection in [database]: defines how to connect to the internal database. You can use any DBMS
supported by SQLAlchemy using a valid Database Urls syntax.

Warning: Check your interface for resultserver IP! Some virtualization software (for example Virtualbox) don’t
bring up the virtual networking interfaces until a virtual machine is started. Cuckoo needs to have the interface
where you bind the resultserver up before the start, so please check your network setup. If you are not sure about
how to get the interface up, a good trick is to manually start and stop an analysis virtual machine, this will bring
virtual networking up. If you are using NAT/PAT in your network, you can set up the resultserver IP to 0.0.0.0
to listen on all interfaces, then use the specific options resultserver_ip and resultserver_port in <machinery>.conf
to specify the address and port as every machine sees them. Note that if you set resultserver IP to 0.0.0.0 in
cuckoo.conf you have to set resultserver_ip for all your virtual machines.

auxiliary.conf

Auxiliary modules are scripts that run concurrently with malware analysis, this file defines their options.

Following is the default conf/auxiliary.conf file:

[sniffer]
Enable or disable the use of an external sniffer (tcpdump) [yes/no].
enabled = yes

Specify the path to your local installation of tcpdump. Make sure this
path is correct.
tcpdump = /usr/sbin/tcpdump

Specify the network interface name on which tcpdump should monitor the
traffic. Make sure the interface is active.
interface = vboxnet0

Specify a Berkeley packet filter to pass to tcpdump.
bpf = not arp

14 Chapter 2. Contents

http://www.sqlalchemy.org/
http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls

Cuckoo Sandbox Book, Release 1.0

<machinery>.conf

Machinery modules are scripts that define how Cuckoo should interact with your virtualization software of choice.

Every module should have a dedicated configuration file which defines the details on the available machines. For
example, if you created a vmware.py machinery module, you should specify vmware in conf/cuckoo.conf and have a
conf/vmware.conf file.

Cuckoo provides some modules by default and for the sake of this guide, we’ll assume you’re going to use VirtualBox.

Following is the default conf/virtualbox.conf file:

[virtualbox]
Specify which VirtualBox mode you want to run your machines on.
Can be "gui", "sdl" or "headless". Refer to VirtualBox’s official
documentation to understand the differences.
mode = gui

Path to the local installation of the VBoxManage utility.
path = /usr/bin/VBoxManage

Specify a comma-separated list of available machines to be used. For each
specified ID you have to define a dedicated section containing the details
on the respective machine. (E.g. cuckoo1,cuckoo2,cuckoo3)
machines = cuckoo1

[cuckoo1]
Specify the label name of the current machine as specified in your
VirtualBox configuration.
label = cuckoo1

Specify the operating system platform used by current machine
[windows/darwin/linux].
platform = windows

Specify the IP address of the current virtual machine. Make sure that the
IP address is valid and that the host machine is able to reach it. If not,
the analysis will fail.
ip = 192.168.56.101

(Optional) Specify the snapshot name to use. If you do not specify a snapshot
name, the VirtualBox MachineManager will use the current snapshot.
Example (Snapshot1 is the snapshot name):
snapshot = Snapshot1

(Optional) Specify the name of the network interface that should be used
when dumping network traffic from this machine with tcpdump. If specified,
overrides the default interface specified in cuckoo.conf
Example (virbr0 is the interface name):
interface = virbr0

(Optional) Specify the IP of the Result Server, as your virtual machine sees it.
The Result Server will always bind to the address and port specified in cuckoo.conf,
however you could set up your virtual network to use NAT/PAT, so you can specify here
the IP address for the Result Server as your machine sees it. If you don’t specify an
address here, the machine will use the default value from cuckoo.conf.
Example:
resultserver_ip = 192.168.56.1

2.2. Installation 15

Cuckoo Sandbox Book, Release 1.0

(Optional) Specify the port for the Result Server, as your virtual machine sees it.
The Result Server will always bind to the address and port specified in cuckoo.conf,
however you could set up your virtual network to use NAT/PAT, so you can specify here
the port for the Result Server as your machine sees it. If you don’t specify a port
here, the machine will use the default value from cuckoo.conf.
Example:
resultserver_port = 2042

(Optional) Set your own tags. These are comma separated and help to identify
specific VMs. You can run samples on VMs with tag you require.
tags = windows_xp_sp3,32_bit,acrobat_reader_6

You can use this same configuration structure for any other machinery module, although existing ones might have
some variations or additional configuration options.

The comments for the options are self-explainatory.

Following is the default conf/kvm.conf file:

[kvm]
Specify a comma-separated list of available machines to be used. For each
specified ID you have to define a dedicated section containing the details
on the respective machine. (E.g. cuckoo1,cuckoo2,cuckoo3)
machines = cuckoo1

[cuckoo1]
Specify the label name of the current machine as specified in your
libvirt configuration.
label = cuckoo1

Specify the operating system platform used by current machine
[windows/darwin/linux].
platform = windows

Specify the IP address of the current virtual machine. Make sure that the
IP address is valid and that the host machine is able to reach it. If not,
the analysis will fail. You may want to configure your network settings in
/etc/libvirt/<hypervisor>/networks/
ip = 192.168.122.105

(Optional) Specify the snapshot name to use. If you do not specify a snapshot
name, the KVM MachineManager will use the current snapshot.
Example (Snapshot1 is the snapshot name):
snapshot = Snapshot1

(Optional) Specify the name of the network interface that should be used
when dumping network traffic from this machine with tcpdump. If specified,
overrides the default interface specified in cuckoo.conf
Example (virbr0 is the interface name):
interface = virbr0

(Optional) Specify the IP of the Result Server, as your virtual machine sees it.
The Result Server will always bind to the address and port specified in cuckoo.conf,
however you could set up your virtual network to use NAT/PAT, so you can specify here
the IP address for the Result Server as your machine sees it. If you don’t specify an
address here, the machine will use the default value from cuckoo.conf.
Example:
resultserver_ip = 192.168.122.101

16 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

(Optional) Specify the port for the Result Server, as your virtual machine sees it.
The Result Server will always bind to the address and port specified in cuckoo.conf,
however you could set up your virtual network to use NAT/PAT, so you can specify here
the port for the Result Server as your machine sees it. If you don’t specify a port
here, the machine will use the default value from cuckoo.conf.
Example:
resultserver_port = 2042

(Optional) Set your own tags. These are comma separated and help to identify
specific VMs. You can run samples on VMs with tag you require.
tags = windows_xp_sp3,32_bit,acrobat_reader_6

memory.conf

The volatility tool offers a large set of plugins for memory dump analysis. Some of them are quite slow. In volatil-
ity.conf enables you to enable or disable the plugins of your choice. To use Volatility you have to follow two steps:

• Enable it before in processing.conf

• Enable memory_dump in cuckoo.conf

In the memory.conf’s basic section you can configure the Volatility profile and the deletion of memory dumps after
processing:

Basic settings
[basic]
Profile to avoid wasting time identifying it
guest_profile = WinXPSP2x86
Delete memory dump after volatility processing.
delete_memdump = no

After that every plugin has an own section for configuration:

Scans for hidden/injected code and dlls
http://code.google.com/p/volatility/wiki/CommandReference#malfind
[malfind]
enabled = on
filter = on

Lists hooked api in user mode and kernel space
Expect it to be very slow when enabled
http://code.google.com/p/volatility/wiki/CommandReference#apihooks
[apihooks]
enabled = off
filter = on

The filter configuration helps you to remove known clean data from the resulting report. It can be configured seperately
for every plugin.

The filter itself is configured in the [mask] section. You can enter a list of pids in pid_generic to filter out processes:

Masks. Data that should not be logged
Just get this information from your plain VM Snapshot (without running malware)
This will filter out unwanted information in the logs
[mask]
pid_generic: a list of process ids that already existed on the machine before the malware was started.
pid_generic = 4, 680, 752, 776, 828, 840, 1000, 1052, 1168, 1364, 1428, 1476, 1808, 452, 580, 652, 248, 1992, 1696, 1260, 1656, 1156

2.2. Installation 17

Cuckoo Sandbox Book, Release 1.0

processing.conf

This file allows you to enable, disable and configure all processing modules. These modules are located under mod-
ules/processing/ and define how to digest the raw data collected during the analysis.

You will find a section for each processing module:

Enable or disable the available processing modules [on/off].
If you add a custom processing module to your Cuckoo setup, you have to add
a dedicated entry in this file, or it won’t be executed.
You can also add additional options under the section of your module and
they will be available in your Python class.

[analysisinfo]
enabled = yes

[behavior]
enabled = yes

[debug]
enabled = yes

[dropped]
enabled = yes

[memory]
enabled = no

[network]
enabled = yes

[static]
enabled = yes

[strings]
enabled = yes

[targetinfo]
enabled = yes

[virustotal]
enabled = yes
Add your VirusTotal API key here. The default API key, kindly provided
by the VirusTotal team, should enable you with a sufficient throughput
and while being shared with all our users, it shouldn’t affect your use.
key = a0283a2c3d55728300d064874239b5346fb991317e8449fe43c902879d758088

You might want to configure the VirusTotal key if you have an account of your own.

reporting.conf

The conf/reporting.conf file contains information on the automated reports generation.

It contains the following sections:

Enable or disable the available reporting modules [on/off].
If you add a custom reporting module to your Cuckoo setup, you have to add
a dedicated entry in this file, or it won’t be executed.

18 Chapter 2. Contents

http://www.virustotal.com

Cuckoo Sandbox Book, Release 1.0

You can also add additional options under the section of your module and
they will be available in your Python class.

[jsondump]
enabled = yes

[reporthtml]
enabled = yes

[mmdef]
enabled = no

[maec40]
enabled = no
mode = overview
processtree = true
output_handles = false
static = true
strings = true
virustotal = true

[mongodb]
enabled = no
host = 127.0.0.1
port = 27017

[hpfclient]
enabled = no
host =
port = 10000
ident =
secret =
channel =

By setting those option to on or off you enable or disable the generation of such reports.

2.2.2 Preparing the Guest

At this point you should have configured Cuckoo host component and you should have designed and defined the
number and the names of the virtual machines you are going to use for malware execution.

Now it’s time to create such machines and to configure them properly.

Creation of the Virtual Machine

Once you have properly installed your virtualization software, you can proceed on creating all the virtual machines
you need.

Using and configuring your virtualization software is out of the scope of this guide, so please refer to the official
documentation.

Note: You can find some hints and considerations on how to design and create your virtualized environ-
ment in the Sandboxing chapter.

Note: For analysis purposes you are recommended to use Windows XP Service Pack 3, but Cuckoo
Sandbox also proved to work with Windows 7 with User Access Control disabled.

2.2. Installation 19

Cuckoo Sandbox Book, Release 1.0

Note: KVM Users - Be sure to choose a hard drive image format that supports
snapshots. See ../../Installation/Preparing the Guest/Saving the Virtual
Machine/KVM for more information.

When creating the virtual machine, Cuckoo doesn’t require any specific configuration. You can choose the options
that best fit your needs.

Requirements

In order to make Cuckoo run properly in your virtualized Windows system, you will have to install some required
softwares and libraries.

Install Python

Python is a strict requirement for the Cuckoo guest component (analyzer) in order to run properly.

You can download the proper Windows installer from the official website. Also in this case Python 2.7 is preferred.

Some Python libraries are optional and provide some additional features to Cuckoo guest component. They include:

• Python Image Library: it’s used for taking screenshots of Windows desktop during the analysis.

They are not strictly required by Cuckoo to work properly, but you are encouraged to install them if you want to have
access to all features available. Make sure to download and install the proper packages according to your Python
version.

Additional Software

At this point you should have installed everything needed by Cuckoo to run properly.

Depending on what kind of files you want to analyze and what kind of sandboxed Windows environment you want
to run the malwares in, you might want to install additional software such as browsers, PDF readers, office suites etc.
Remeber to disable the “auto update” or “check for updates” feature of any additional software.

This is completely up to you and to how you, you might get some hints by reading the Sandboxing chapter.

Network Configuration

Now it’s the time to setup the network configuration for your virtual machine.

Windows Settings

Before configuring the underlying networking of the virtual machine, you might want to trick some settings inside
Windows itself.

One of the most important things to do is disabling Windows Firewall and the Automatic Updates. The reason behind
this is that they can affect the behavior of the malware under normal circumstances and that they can pollute the
network analysis performed by Cuckoo, by dropping connections or including unrelevant requests.

You can do so from Windows’ Control Panel as shown in the picture:

20 Chapter 2. Contents

http://www.python.org/getit/
http://www.pythonware.com/products/pil/

Cuckoo Sandbox Book, Release 1.0

Virtual Networking

Now you need to decide how to make your virtual machine able to access Internet or your local network.

While in previous releases Cuckoo used shared folders to exchange data between the Host and Guests, from release
0.4 it adopts a custom agent that works over the network using a simple XMLRPC protocol.

In order to make it work properly you’ll have to configure your machine’s network so that the Host and the Guest can
communicate. Test network trying to ping a guest is a good practice, to be sure about virtual network setup. Use only
static address for your guest, as today Cuckoo doesn’t support DHCP and using it will break your setup.

This stage is very much up to your own requirements and to the characteristics of your virtualization software.

Warning: Virtual networking errors! Virtual networking is a vital component for Cuckoo, you must
be really sure to get connectivity between host and guest. Most of the issues reported by users are
related to a wrong setup of their networking. You you aren’t sure about that check your virtualization
software documentation and test connectivity with ping and telnet.

The recommended setup is using a Host-Only networking layout with proper forwarding and filtering configuration
done with iptables on the Host.

For example, using VirtualBox, you can enable Internet access to the virtual machines using the following iptables
rules (assuming that eth0 is your outgoing interface, vboxnet0 is your virtual interface and 192.168.56.0/24 is your
subnet address):

iptables -A FORWARD -o eth0 -i vboxnet0 -s 192.168.56.0/24 -m conntrack --ctstate NEW -j ACCEPT
iptables -A FORWARD -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT
iptables -A POSTROUTING -t nat -j MASQUERADE

And adding IP forward:

2.2. Installation 21

Cuckoo Sandbox Book, Release 1.0

sysctl -w net.ipv4.ip_forward=1

Install the Agent

From release 0.4 Cuckoo adopts a custom agent that runs inside the Guest and that handles the communication and
the exchange of data with the Host. This agent is designed to be cross-platform, therefore you should be able to use
it on Windows as well as on Linux and OS X. In order to make Cuckoo work properly, you’ll have to install and start
this agent.

It’s very simple.

In the agent/ directory you will find and agent.py file, just copy it to the Guest operating system (in whatever way you
want, perhaps a temporary shared folder or by downloading it from a Host webserver) and run it. This will launch the
XMLRPC server which will be listening for connections.

On Windows simply launching the script will also spawn a Python window, if you want to hide it you can rename the
file from agent.py to agent.pyw which will prevent the window from spawning.

If you want the script to be launched at Windows’ boot, placing the file in the Startup folder will make it.

Saving the Virtual Machine

Now you should be ready to go and save the virtual machine to a snapshot state.

Before doing this make sure you rebooted it softly and that it’s currently running, with Cuckoo’s agent running
and with Windows fully booted.

Now you can proceed saving the machine. The way to do it obviously depends on the virtualization software you
decided to use.

If you follow all the below steps properly, your virtual machine should be ready to be used by Cuckoo.

VirtualBox

If you are going for VirtualBox you can take the snapshot from the graphical user interface or from the command line:

$ VBoxManage snapshot "<Name of VM>" take "<Name of snapshot>" --pause

After the snapshot creation is completed, you can power off the machine and restore it:

$ VBoxManage controlvm "<Name of VM>" poweroff
$ VBoxManage snapshot "<Name of VM>" restorecurrent

KVM

If decided to adopt KVM, you must fist of all be sure to use a disk format for your virtual machines which supports
snapshots. By default libvirt tools create RAW virtual disks, and since we need snapshots you’ll either have to use
QCOW2 or LVM. For the scope of this guide we adopt QCOW2, which is easier to setup than LVM.

The easiest way to create such a virtual disk in the correct way is using the tools provided by the libvirt suite. You can
either use virsh if you prefer command-line interfaces or virt-manager for a nice GUI. You should be able to
directly create it in QCOW2 format, but in case you have a RAW disk you can convert it like following:

$ cd /your/disk/image/path
$ qemu-img convert -O qcow2 your_disk.raw your_disk.qcow2

22 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

Now you have to edit your VM definition like following:

$ virsh edit "<Name of VM>"

Find the disk section, it looks like this:

<disk type=’file’ device=’disk’>
<driver name=’qemu’ type=’raw’/>
<source file=’/your/disk/image/path/your_disk.raw’/>
<target dev=’hda’ bus=’ide’/>
<address type=’drive’ controller=’0’ bus=’0’ unit=’0’/>

</disk>

And change “type” to qcow2 and “source file” to your qcow2 disk image, like this:

<disk type=’file’ device=’disk’>
<driver name=’qemu’ type=’qcow2’/>
<source file=’/your/disk/image/path/your_disk.qcow2’/>
<target dev=’hda’ bus=’ide’/>
<address type=’drive’ controller=’0’ bus=’0’ unit=’0’/>

</disk>

Now test your virtual machine, if all works prepare it for snapshotting while running Cuckoo’s agent. This means the
virtual machine needs to be running while you are taking the snapshot. Then you can shut it down. You can finally
take a snapshot with the following command:

$ virsh snapshot-create "<Name of VM>"

Having multiple snapshots can cause errors.

ERROR: No snapshot found for virtual machine VM-Name

VM snapshots can be managed using the following commands.

$ virsh snapshot-list “VM-Name”

$ virsh snapshot-delete “VM-Name” 1234567890

VMware Workstation

If decided to adopt VMware Workstation, you can take the snapshot from the graphical user interface or from the
command line:

$ vmrun snapshot "/your/disk/image/path/wmware_image_name.vmx" your_snapshot_name

Where your_snapshot_name is the name you choose for the snapshot. After that power off the machine from the
graphical user interface or from the command line:

$ vmrun stop "/your/disk/image/path/wmware_image_name.vmx" hard

Cloning the Virtual Machine

In case you planned to use more than one virtual machine, there’s no need to repeat all the steps done so far: you can
clone it. In this way you’ll have a copy of the original virtualized Windows with all requirements already installed.

The new virtual machine will eventually bring along also the settings of the original one, which is not good. Now
you need to proceed repeating the steps explained in Network Configuration, Install the Agent and Saving the Virtual
Machine for this new machine.

2.2. Installation 23

Cuckoo Sandbox Book, Release 1.0

2.2.3 Upgrade from a previous release

Cuckoo Sandbox grows really fast and in every release new features are added and some others are fixed or removed.
If not otherwise specified in the release documentation, the suggested way to upgrade your Cuckoo instance is to
perform a fresh setup as described in Installation.

The following steps are suggested:

1. Backup your installation.

2. Read the documentation shipped with the new release.

3. Make sure to have installed all required dependencies, otherwise install them.

4. Do a Cuckoo fresh installation of the Host components.

5. Reconfigure Cuckoo as explained in this book (copying old configuration files is not safe because options can
change between releases).

6. If you are using an external database instead of default or you are using MongoDb reporting module is suggested
to start all databases from scratch, due to possible schema changes between Cuckoo’s releases.

7. Test it!

If something goes wrong you probably failed some steps during the fresh installation or reconfiguration. Check again
the procedure explained in this book.

It’s not recommended to rewrite an old Cuckoo installation with the latest release files, as it might raise some problems
because:

• You are overwriting Python source files (.py) but Python bytecode files (.pyc) are still in place.

• There are configuration files changes across the two versions, check our CHANGELOG file for added or re-
moved configuration options.

• The part of Cuckoo which runs inside guests (agent.py) may change.

• If you are using an external database like the reporting module for MongoDb a change in the data schema may
screw your database.

2.3 Usage

This chapter explains how to use Cuckoo.

2.3.1 Starting Cuckoo

To start Cuckoo use the command:

$ python cuckoo.py

Make sure to run it inside Cuckoo’s root directory.

You will get an output similar to this:

eeee e e eeee e e eeeee eeeee
8 8 8 8 8 8 8 8 8 88 8 88
8e 8e 8 8e 8eee8e 8 8 8 8
88 88 8 88 88 8 8 8 8 8
88e8 88ee8 88e8 88 8 8eee8 8eee8

24 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

Cuckoo Sandbox 1.0
www.cuckoosandbox.org
Copyright (c) 2010-2014

Checking for updates...
Good! You have the latest version available.

2013-04-07 15:57:17,459 [lib.cuckoo.core.scheduler] INFO: Using "virtualbox" machine manager
2013-04-07 15:57:17,861 [lib.cuckoo.core.scheduler] INFO: Loaded 1 machine/s
2013-04-07 15:57:17,862 [lib.cuckoo.core.scheduler] INFO: Waiting for analysis tasks...

Note that Cuckoo checks for updates on a remote API located at api.cuckoosandbox.org. You can avoid this by
disabling the version_check option in the configuration file.

Now Cuckoo is ready to run and it’s waiting for submissions.

cuckoo.py accepts some command line options as shown by the help:

usage: cuckoo.py [-h] [-q] [-d] [-v] [-a]

optional arguments:
-h, --help show this help message and exit
-q, --quiet Display only error messages
-d, --debug Display debug messages
-v, --version show program’s version number and exit
-a, --artwork Show artwork

Most importantly --debug and --quiet respectively increase and decrease the logging verbosity.

2.3.2 Submit an Analysis

• Submission Utility

• API

• web.py

• Python Functions

Submission Utility

The easiest way to submit an analysis is to use the provided submit.py command-line utility. It currently has the
following options available:

usage: submit.py [-h] [--url] [--package PACKAGE] [--custom CUSTOM]
[--timeout TIMEOUT] [--options OPTIONS] [--priority PRIORITY]
[--machine MACHINE] [--platform PLATFORM] [--memory]
[--enforce-timeout] [--clock CLOCK] [--tags TAGS] [--max MAX]
[--pattern PATTERN] [--shuffle] [--unique] [--quiet]
target

positional arguments:
target URL, path to the file or folder to analyze

optional arguments:
-h, --help show this help message and exit
--url Specify whether the target is an URL
--package PACKAGE Specify an analysis package

2.3. Usage 25

Cuckoo Sandbox Book, Release 1.0

--custom CUSTOM Specify any custom value
--timeout TIMEOUT Specify an analysis timeout
--options OPTIONS Specify options for the analysis package (e.g.

"name=value,name2=value2")
--priority PRIORITY Specify a priority for the analysis represented by an

integer
--machine MACHINE Specify the identifier of a machine you want to use
--platform PLATFORM Specify the operating system platform you want to use

(windows/darwin/linux)
--memory Enable to take a memory dump of the analysis machine
--enforce-timeout Enable to force the analysis to run for the full

timeout period
--clock CLOCK Set virtual machine clock
--tags TAGS Specify tags identifier of a machine you want to use
--max MAX Maximum samples to add in a row
--pattern PATTERN Pattern of files to submit
--shuffle Shuffle samples before submitting them
--unique Only submit new samples, ignore duplicates
--quiet Only print text on failure

If you specify a directory as path, all the files contained in it will be submitted for analysis.

The concept of analysis packages will be dealt later in this documentation (at Analysis Packages). Following are some
usage examples:

Example: submit a local binary:

$./utils/submit.py /path/to/binary

Example: submit an URL:

$./utils/submit.py --url http://www.example.com

Example: submit a local binary and specify an higher priority:

$./utils/submit.py --priority 5 /path/to/binary

Example: submit a local binary and specify a custom analysis timeout of 60 seconds:

$./utils/submit.py --timeout 60 /path/to/binary

Example: submit a local binary and specify a custom analysis package:

$./utils/submit.py --package <name of package> /path/to/binary

Example: submit a local binary and specify a custom analysis package and some options (in this case a command line
argument for the malware):

$./utils/submit.py --package exe --options arguments=--dosomething /path/to/binary.exe

Example: submit a local binary to be run on virtual machine cuckoo1:

$./utils/submit.py --machine cuckoo1 /path/to/binary

Example: submit a local binary to be run on a Windows machine:

$./utils/submit.py --platform windows /path/to/binary

Example: submit a local binary and take a full memory dump of the analysis machine:

26 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

$./utils/submit.py --memory /path/to/binary

Example: submit a local binary and force the analysis to be executed for the full timeout (disregarding the internal
mechanism that Cuckoo uses to decide when to terminate the analysis):

$./utils/submit.py --enforce-timeout /path/to/binary

Example: submit a local binary and set virutal machine clock. Format is %m-%d-%Y %H:%M:%S. If not specified
current time is used. For example if we want run a sample the 24 january 2001 at 14:41:20:

$./utils/submit.py --clock "01-24-2001 14:41:20" /path/to/binary

Example: submit a sample for volatility analysis (to reduce side effects of the cuckoo hooking, switch it off by options
free=True):

$./utils/submit.py --memory --options free=True /path/to/binary

web.py

Cuckoo provides a very small utility under utils/web.py, which will bind a simple webserver on localhost port
8080, through which you will be able to browse through existing reports as well as submit new files.

Beware that this is not a full-fledged web interface, which is instead provided under the folder web/ as a Django-
powered application. You can find more details about that under Web interface.

API

Detailed usage of the REST API interface is described in REST API.

Python Functions

In order to keep track of submissions, samples and overall execution, Cuckoo uses a popular Python ORM called
SQLAlchemy that allows you to make the sandbox use SQLite, MySQL, PostgreSQL and several other SQL database
systems.

Cuckoo is designed to be easily integrated in larger solutions and to be fully automated. In order to automate analysis
submission we suggest to use the REST API interface described in REST API, but in the case you want to write your
own Python submission script, you can use the add_path() and add_url() functions.

add_path(file_path[, timeout=0[, package=None[, options=None[, priority=1[, custom=None[, ma-
chine=None[, platform=None[, memory=False[, enforce_timeout=False]]]]]]]]])

Add a local file to the list of pending analysis tasks. Returns the ID of the newly generated task.

Parameters

• file_path (string) – path to the file to submit

• timeout (integer) – maximum amount of seconds to run the analysis for

• package (string or None) – analysis package you want to use for the specified file

• options (string or None) – list of options to be passed to the analysis package (in the format
key=value,key=value)

• priority (integer) – numeric representation of the priority to assign to the specified file (1
being low, 2 medium, 3 high)

2.3. Usage 27

http://www.sqlalchemy.org

Cuckoo Sandbox Book, Release 1.0

• custom (string or None) – custom value to be passed over and possibly reused at processing
or reporting

• machine (string or None) – Cuckoo identifier of the virtual machine you want to use, if
none is specified one will be selected automatically

• platform (string or None) – operating system platform you want to run the analysis one
(currently only Windows)

• memory (True or False) – set to True to generate a full memory dump of the analysis
machine

• enforce_timeout (True or False) – set to True to force the executuion for the full timeout

• clock (string or None) – provide a custom clock time to set in the analysis machine

Return type integer

Example usage:

1 >>> from lib.cuckoo.core.database import Database
2 >>> db = Database()
3 >>> db.add_path("/tmp/malware.exe")
4 1
5 >>>

add_url(url[, timeout=0[, package=None[, options=None[, priority=1[, custom=None[, machine=None[,
platform=None[, memory=False[, enforce_timeout=False]]]]]]]]])

Add a local file to the list of pending analysis tasks. Returns the ID of the newly generated task.

Parameters

• url (string) – URL to analyze

• timeout (integer) – maximum amount of seconds to run the analysis for

• package (string or None) – analysis package you want to use for the specified URL

• options (string or None) – list of options to be passed to the analysis package (in the format
key=value,key=value)

• priority (integer) – numeric representation of the priority to assign to the specified URL (1
being low, 2 medium, 3 high)

• custom (string or None) – custom value to be passed over and possibly reused at processing
or reporting

• machine (string or None) – Cuckoo identifier of the virtual machine you want to use, if
none is specified one will be selected automatically

• platform (string or None) – operating system platform you want to run the analysis one
(currently only Windows)

• memory (True or False) – set to True to generate a full memory dump of the analysis
machine

• enforce_timeout (True or False) – set to True to force the executuion for the full timeout

• clock (string or None) – provide a custom clock time to set in the analysis machine

Return type integer

Example Usage:

28 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

1 >>> from lib.cuckoo.core.database import Database
2 >>> db = Database()
3 >>> db.add_url("http://www.cuckoosandbox.org")
4 2
5 >>>

2.3.3 Web interface

Cuckoo provides a full-fledged web interface in the form of a Django application. This interface will allow you to
submit files, browse through the reports as well as search across all the analysis results.

Configuration

The web interface pulls data from Mongo database so have Mongo reporting module enabled in reporting.conf
is mandatory for the functioning of the interface. If that’s not the case, the application won’t start and it will raise an
exception.

The interface can be configured edititing local_settings.py under web/web/:

If you want to customize your cuckoo path set it here.
CUCKOO_PATH = "/where/cuckoo/is/placed/"

If you want to customize your cuckoo temporary upload path set it here.
CUCKOO_FILE_UPLOAD_TEMP_DIR = "/where/web/tmp/is/placed/"

Maximum upload size.
MAX_UPLOAD_SIZE = 26214400

Override default secret key stored in secret_key.py
Make this unique, and don’t share it with anybody.
SECRET_KEY = "YOUR_RANDOM_KEY"

Local time zone for this installation. Choices can be found here:
http://en.wikipedia.org/wiki/List_of_tz_zones_by_name
although not all choices may be available on all operating systems.
On Unix systems, a value of None will cause Django to use the same
timezone as the operating system.
If running in a Windows environment this must be set to the same as your
system time zone.
TIME_ZONE = "America/Chicago"

Language code for this installation. All choices can be found here:
http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = "en-us"

ADMINS = (
("Your Name", "your_email@example.com"),

)

MANAGERS = ADMINS

Allow verbose debug error message in case of application fault.
It’s strongly suggested to set it to False if you are serving the
web application from a web server front-end (i.e. Apache).
DEBUG = True

2.3. Usage 29

Cuckoo Sandbox Book, Release 1.0

A list of strings representing the host/domain names that this Django site
can serve.
Values in this list can be fully qualified names (e.g. ’www.example.com’).
When DEBUG is True or when running tests, host validation is disabled; any
host will be accepted. Thus it’s usually only necessary to set it in production.
ALLOWED_HOSTS = ["*"]

Usage

In order to start the web interface, you can simply run the following command from the web/ directory:

$ python manage.py runserver

If you want to configure the web interface as listening for any IPs on a specified port, you run start it with the following
command (replace PORT with the number of your desired port):

$ python manage.py runserver 0.0.0.0:PORT

You can also serve the web interface using the WSGI interface of the web server of your choice: Apache, Nginx,
Unicorn and so on. Please refer to the respective documentation

You can serve Cuckoo’s web interface using WSGI interface with common web servers: Apache, Nginx, Unicorn and
so on. Please refer both to the documentation of the web server of your choice as well as Django documentation.

2.3.4 REST API

As mentioned in Submit an Analysis, Cuckoo provides a simple and lightweight REST API server implemented in
Bottle.py, therefore in order to make the service work you’ll need it installed, Bottle release must be 0.10 or above.

On Debian/Ubuntu:

$ sudo apt-get install python-bottle

With Pip:

$ pip install bottle

Starting the API server

In order to start the API server you can simply do:

$./utils/api.py

By default it will bind the service on localhost:8090. If you want to change those values, you can for example with:

$./utils/api.py --host 0.0.0.0 --port 1337

Resources

Following is a list of currently available resources and a brief description. For details click on the resource name.

30 Chapter 2. Contents

https://docs.djangoproject.com/en/1.6/
http://www.bottlepy.org

Cuckoo Sandbox Book, Release 1.0

Resource Description
POST
/tasks/create/file

Adds a file to the list of pending tasks to be processed and analyzed.

POST
/tasks/create/url

Adds an URL to the list of pending tasks to be processed and analyzed.

GET
/tasks/list

Returns the list of tasks stored in the internal Cuckoo database. You can optionally specify a limit
of entries to return.

GET
/tasks/view

Returns the details on the task assigned to the specified ID.

GET
/tasks/delete

Removes the given task from the database and deletes the results.

GET
/tasks/report

Returns the report generated out of the analysis of the task associated with the specified ID. You
can optionally specify which report format to return, if none is specified the JSON report will be
returned.

GET
/files/view

Search the analyzed binaries by MD5 hash, SHA256 hash or internal ID (referenced by the tasks
details).

GET
/files/get

Returns the content of the binary with the specified SHA256 hash.

GET /ma-
chines/list

Returns the list of analysis machines available to Cuckoo.

GET /ma-
chines/view

Returns details on the analysis machine associated with the specified name.

GET
/cuckoo/status

Returns the basic cuckoo status, including version and tasks overview

/tasks/create/file

POST /tasks/create/file

Adds a file to the list of pending tasks. Returns the ID of the newly created task.

Example request:

curl -F file=@/path/to/file http://localhost:8090/tasks/create/file

Example response:

{
"task_id" : 1

}

Form parameters:

• file (required) - path to the file to submit

• package (optional) - analysis package to be used for the analysis

• timeout (optional) (int) - analysis timeout (in seconds)

• priority (optional) (int) - priority to assign to the task (1-3)

• options (optional) - options to pass to the analysis package

• machine (optional) - ID of the analysis machine to use for the analysis

• platform (optional) - name of the platform to select the analysis machine from
(e.g. “windows”)

2.3. Usage 31

Cuckoo Sandbox Book, Release 1.0

• tags (optional) - define machine to start by tags. Platform must be set to use that.
Tags are comma separated

• custom (optional) - custom string to pass over the analysis and the process-
ing/reporting modules

• memory (optional) - enable the creation of a full memory dump of the analysis ma-
chine

• enforce_timeout (optional) - enable to enforce the execution for the full timeout
value

• clock (optional) - set virtual machine clock (format %m-%d-%Y %H:%M:%S)

Status codes:

• 200 - no error

/tasks/create/url

POST /tasks/create/url

Adds a file to the list of pending tasks. Returns the ID of the newly created task.

Example request:

curl -F url="http://www.malicious.site" http://localhost:8090/tasks/create/url

Example response:

{
"task_id" : 1

}

Form parameters:

• url (required) - URL to analyze

• package (optional) - analysis package to be used for the analysis

• timeout (optional) (int) - analysis timeout (in seconds)

• priority (optional) (int) - priority to assign to the task (1-3)

• options (optional) - options to pass to the analysis package

• machine (optional) - ID of the analysis machine to use for the analysis

• platform (optional) - name of the platform to select the analysis machine from
(e.g. “windows”)

• tags (optional) - define machine to start by tags. Platform must be set to use that.
Tags are comma separated

• custom (optional) - custom string to pass over the analysis and the process-
ing/reporting modules

• memory (optional) - enable the creation of a full memory dump of the analysis ma-
chine

• enforce_timeout (optional) - enable to enforce the execution for the full timeout
value

• clock (optional) - set virtual machine clock (format %m-%d-%Y %H:%M:%S)

32 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

Status codes:

• 200 - no error

/tasks/list

GET /tasks/list/ (int: limit) / (int: offset)

Returns list of tasks.

Example request:

curl http://localhost:8090/tasks/list

Example response:

{
"tasks": [

{
"category": "url",
"machine": null,
"errors": [],
"target": "http://www.malicious.site",
"package": null,
"sample_id": null,
"guest": {},
"custom": null,
"priority": 1,
"platform": null,
"options": null,
"status": "pending",
"enforce_timeout": false,
"timeout": 0,
"memory": false,
"tags": []
"id": 1,
"added_on": "2012-12-19 14:18:25",
"completed_on": null

},
{

"category": "file",
"machine": null,
"errors": [],
"target": "/tmp/malware.exe",
"package": null,
"sample_id": 1,
"guest": {},
"custom": null,
"priority": 1,
"platform": null,
"options": null,
"status": "pending",
"enforce_timeout": false,
"timeout": 0,
"memory": false,
"tags": [

"32bit",
"acrobat_6",

],

2.3. Usage 33

Cuckoo Sandbox Book, Release 1.0

"id": 2,
"added_on": "2012-12-19 14:18:25",
"completed_on": null

}
]

}

Parameters:

• limit (optional) (int) - maximum number of returned tasks

• offset (optional) (int) - data offset

Status codes:

• 200 - no error

/tasks/view

GET /tasks/view/ (int: id)

Returns details on the task associated with the specified ID.

Example request:

curl http://localhost:8090/tasks/view/1

Example response:

{
"task": {

"category": "url",
"machine": null,
"errors": [],
"target": "http://www.malicious.site",
"package": null,
"sample_id": null,
"guest": {},
"custom": null,
"priority": 1,
"platform": null,
"options": null,
"status": "pending",
"enforce_timeout": false,
"timeout": 0,
"memory": false,
"tags": [

"32bit",
"acrobat_6",

],
"id": 1,
"added_on": "2012-12-19 14:18:25",
"completed_on": null

}
}

Parameters:

• id (required) (int) - ID of the task to lookup

Status codes:

34 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

• 200 - no error

• 404 - task not found

/tasks/delete

GET /tasks/delete/ (int: id)

Removes the given task from the database and deletes the results.

Example request:

curl http://localhost:8090/tasks/delete/1

Parameters:

• id (required) (int) - ID of the task to delete

Status codes:

• 200 - no error

• 404 - task not found

• 500 - unable to delete the task

/tasks/report

GET /tasks/report/ (int: id) / (str: format)

Returns the report associated with the specified task ID.

Example request:

curl http://localhost:8090/tasks/report/1

Parameters:

• id (required) (int) - ID of the task to get the report for

• format (optional) - format of the report to retrieve
[json/html/maec/metadata/all/dropped]. If none is specified the JSON report
will be returned. all returns all the result files as tar.bz2, dropped the dropped
files as tar.bz2

Status codes:

• 200 - no error

• 400 - invalid report format

• 404 - report not found

/files/view

GET /files/view/md5/ (str: md5)

GET /files/view/sha256/ (str: sha256)

GET /files/view/id/ (int: id)

2.3. Usage 35

Cuckoo Sandbox Book, Release 1.0

Returns details on the file matching either the specified MD5 hash, SHA256 hash or ID.

Example request:

curl http://localhost:8090/files/view/id/1

Example response:

{
"sample": {

"sha1": "da39a3ee5e6b4b0d3255bfef95601890afd80709",
"file_type": "empty",
"file_size": 0,
"crc32": "00000000",
"ssdeep": "3::",
"sha256": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
"sha512": "cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e",
"id": 1,
"md5": "d41d8cd98f00b204e9800998ecf8427e"

}
}

Parameters:

• md5 (optional) - MD5 hash of the file to lookup

• sha256 (optional) - SHA256 hash of the file to lookup

• id (optional) (int) - ID of the file to lookup

Status codes:

• 200 - no error

• 400 - invalid lookup term

• 404 - file not found

/files/get

GET /files/get/ (str: sha256)

Returns the binary content of the file matching the specified SHA256 hash.

Example request:

curl http://localhost:8090/files/get/e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 > sample.exe

Status codes:

• 200 - no error

• 404 - file not found

/machines/list

GET /machines/list

Returns a list with details on the analysis machines available to Cuckoo.

Example request:

36 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

curl http://localhost:8090/machines/list

Example response:

{
"machines": [

{
"status": null,
"locked": false,
"name": "cuckoo1",
"resultserver_ip": "192.168.56.1",
"ip": "192.168.56.101",
"tags": [

"32bit",
"acrobat_6",

],
"label": "cuckoo1",
"locked_changed_on": null,
"platform": "windows",
"snapshot": null,
"interface": null,
"status_changed_on": null,
"id": 1,
"resultserver_port": "2042"

}
]

}

Status codes:

• 200 - no error

/machines/view

GET /machines/view/ (str: name)

Returns details on the analysis machine associated with the given name.

Example request:

curl http://localhost:8090/machines/view/cuckoo1

Example response:

{
"machine": {

"status": null,
"locked": false,
"name": "cuckoo1",
"resultserver_ip": "192.168.56.1",
"ip": "192.168.56.101",
"tags": [

"32bit",
"acrobat_6",

],
"label": "cuckoo1",
"locked_changed_on": null,
"platform": "windows",
"snapshot": null,

2.3. Usage 37

Cuckoo Sandbox Book, Release 1.0

"interface": null,
"status_changed_on": null,
"id": 1,
"resultserver_port": "2042"

}
}

Status codes:

• 200 - no error

• 404 - machine not found

/cuckoo/status

GET /cuckoo/status/

Returns status of the cuckoo server.

Example request:

curl http://localhost:8090/cuckoo/status

Example response:

{
"tasks": {

"reported": 165,
"running": 2,
"total": 167,
"completed": 0,
"pending": 0

},
"version": "1.0",
"protocol_version": 1,
"hostname": "Patient0",
"machines": {

"available": 4,
"total": 5

}
"tools":["vanilla"]

}

Status codes:

• 200 - no error

• 404 - machine not found

2.3.5 Analysis Packages

The analysis packages are a core component of Cuckoo Sandbox. They consist in structured Python classes which,
executed in the guest machines, describe how Cuckoo’s analyzer component should conduct the analysis.

Cuckoo provides some default analysis packages that you can use, but you are able to create your own or eventually
modify the existing ones. You can find them located at analyzer/windows/modules/packages/.

38 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

As described in Submit an Analysis, you can specify some options to the analysis packages in the form of
key1=value1,key2=value2. The existing analysis packages already include some default options that can be
enabled.

Following is the list of existing packages in alphabetical order:

• applet: used to analyze Java applets.

Options:

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

– class: specify the name of the class to be executed. This option is mandatory for a correct
execution.

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

• bin: used to analyze generic binary data, such as shellcodes.

Options:

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

• cpl: used to analyze Control Panel Applets.

Options:

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

• dll: used to run and analyze Dinamically Linked Libraries.

Options:

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

– function: specify the function to be executed. If none is specified, Cuckoo will try to run
DllMain.

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

• doc: used to run and analyze Microsoft Word documents.

Options:

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

2.3. Usage 39

Cuckoo Sandbox Book, Release 1.0

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

• exe: default analysis package used to analyze generic Windows executables.

Options:

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

– arguments: specify any command line argument to pass to the initial process of the sub-
mitted malware.

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

• generic: used to run and analyze generic samples via cmd.exe.

Options:

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

• html: used to analyze Internet Explorer‘s behavior when opening the given HTML file.

Options:

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

• ie: used to analyze Internet Explorer‘s behavior when opening the given URL.

Options:

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

• jar: used to analyze Java JAR containers.

Options:

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

– class: specify the path of the class to be executed. If none is specified, Cuckoo will try to
execute the main function specified in the Jar’s MANIFEST file.

40 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

• pdf: used to run and analyze PDF documents.

Options:

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

• vbs: used to run and analyzis VBScript files.

Options:

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

• xls: used to run and analyze Microsoft Excel documents.

Options:

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

• zip: used to run and analyze Zip archives.

Options:

– file: specify the name of the file contained in the archive to execute. If none is specified,
Cuckoo will try to execute sample.exe.

– free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be
executed freely.

– arguments: specify any command line argument to pass to the initial process of the sub-
mitted malware.

– password: specify the password of the archive. If none is specified, Cuckoo will try to
extract the archive without password or use the password “infected”.

– procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored pro-
cesses.

– dll: specify the name of an optional DLL to be used as a replacement for cuckoomon.dll.

You can find more details on how to start creating new analysis packages in the Analysis Packages customization
chapter.

As you already know, you can select which analysis package to use by specifying its name at submission time (see
Submit an Analysis) like following:

2.3. Usage 41

Cuckoo Sandbox Book, Release 1.0

$./utils/submit.py --package <package name> /path/to/malware

If none is specified, Cuckoo will try to detect the file type and select the correct analysis package accordingly. If
the file type is not supported by default the analysis will be aborted, therefore you are always invited to specify the
package name whenever it’s possible.

For example, to launch a malware and specify some options you can do:

$./utils/submit.py --package dll --options function=FunctionName /path/to/malware.dll

2.3.6 Analysis Results

Once an analysis is completed, several files are stored in a dedicated directory. All the analysis are stored under
the directory storage/analyses/ inside a subdirectory named with the incremental numerical ID which represents the
analysis task inside the database.

Following is an example of an analysis directory structure:
.
|-- analysis.conf
|-- analysis.log
|-- binary
|-- dump.pcap
|-- memory.dmp
|-- files
| |-- 1234567890
| ‘-- dropped.exe
|-- logs
| |-- 1232.raw
| |-- 1540.raw
| ‘-- 1118.raw
|-- reports
| |-- report.html
| |-- report.json
| |-- report.maec-40.xml
| ‘-- report.metadata.xml
‘-- shots

|-- 0001.jpg
|-- 0002.jpg
|-- 0003.jpg
‘-- 0004.jpg

analysis.conf

This is a configuration file automatically generated by Cuckoo to instruct its analyzer some details about the current
analysis. It’s generally of no interest for the end-user, as it’s exclusively used internally by the sandbox.

analysis.log

This is a log file generated by the analyzer and that contains a trace of the analysis execution inside the guest environ-
ment. It will report the creation of processes, files and eventual error occurred during the execution.

dump.pcap

This is the network dump generated by tcpdump or any other corresponding network sniffer.

42 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

memory.dmp

In case you enabled it, this file contains the full memory dump of the analysis machine.

files/

This directory contains all the files the malware operated on and that Cuckoo was able to dump.

logs/

This directory contains all the raw logs generated by Cuckoo’s process monitoring.

reports/

This directory contains all the reports generated by Cuckoo as explained in the Configuration chapter.

shots/

This directory contains all the screenshots of the guest’s desktop taken during the malware execution.

2.3.7 Utilities

Cuckoo comes with a set of pre-built utilities to automatize several common tasks. You can find them in “utils” folder.

Cleanup utility

If you want to delete all history, analysis, data and begin again from the first task you need clean.sh utility.

Note: Running clean.sh will delete: analysis results, binaries, SQLite database (if used) and logs.

To clean your setup, run:

$./utils/clean.sh

This utility is designed to be used with Cuckoo (including API and web interface) not running.

If you are using a custom database (MySQL, PostgreSQL or SQLite in custom location) clean.sh doesn’t clean it, you
have to take care of that.

Submission Utility

Submits sample to analysis. This tool is already described in Submit an Analysis.

Web Utility

Cuckoo’s web interface. This tool is already described in Submit an Analysis.

2.3. Usage 43

Cuckoo Sandbox Book, Release 1.0

Processing Utility

Run the results processing engine and optionally the reporting engine (run all reports) on an already available analysis
folder, in order to not re-run the analysis if you want to re-generate the reports for it. This is used mainly in debugging
and developing Cuckoo. For example if you want run again the report engine for analysis number 1:

$./utils/process.py 1

If you want to re-generate the reports:

$./utils/process.py --report 1

Community Download Utility

This utility downloads signatures from Cuckoo Community Repository and installs specific additional modules in your
local setup and for example update id with all the latest available signatures. Following are the usage options:

$./utils/community.py

usage: community.py [-h] [-a] [-s] [-p] [-m] [-r] [-f] [-w]

optional arguments:
-h, --help show this help message and exit
-a, --all Download everything
-s, --signatures Download Cuckoo signatures
-p, --processing Download processing modules
-m, --machinemanagers

Download machine managers
-r, --reporting Download reporting modules
-f, --force Install files without confirmation
-w, --rewrite Rewrite existing files

Example: install all available signatures:

$./utils/community.py --signatures --force

2.4 Customization

This chapter explains how to customize Cuckoo. Cuckoo is written in a modular architecture built to be as much
customizable it can, to fit all user’s needs.

2.4.1 Auxiliary Modules

Auxiliary modules define some procedures that need to be executed in parallel to every single analysis process. All
auxiliary modules should be placed under the modules/auxiliary/ directory.

The skeleton of a module would look something like this:

1 from lib.cuckoo.common.abstracts import Auxiliary
2

3 class MyAuxiliary(Auxiliary):
4

5 def start(self):
6 # Do something.

44 Chapter 2. Contents

https://github.com/cuckoobox/community

Cuckoo Sandbox Book, Release 1.0

7

8 def stop(self):
9 # Stop the execution.

The function start() will be executed before starting the analysis machine and effectively executing the submitted
malicious file, while the stop() function will be launched at the very end of the analysis process, before launching
the processing and reporting procedures.

For example, an auxiliary module provided by default in Cuckoo is called sniffer.py and takes care of executing
tcpdump in order to dump the generated network traffic.

2.4.2 Machinery Modules

Machinery modules define how Cuckoo should interact with your virtualization software (or potentially even with
physical disk imaging solutions). Since we decided to not enforce any particular vendor, from release 0.4 you are able
to use your preferred and, in case is not supported by default, write a custom Python module that define how to make
Cuckoo use it.

Every machinery module is and should be located inside modules/machinery/.

A basic machinery module could look like:

1 from lib.cuckoo.common.abstracts import Machinery
2 from lib.cuckoo.common.exceptions import CuckooMachineError
3

4 class MyMachinery(Machinery):
5 def start(self, label):
6 try:
7 revert(label)
8 start(label)
9 except SomethingBadHappens as e:

10 raise CuckooMachineError("OPS!")
11

12 def stop(self, label):
13 try:
14 stop(label)
15 except SomethingBadHappens as e:
16 raise CuckooMachineError("OPS!")

The only requirements for Cuckoo are that:

• The class inherits Machinery.

• You have a start() and stop() functions.

• You preferably raise CuckooMachineError when something fails.

As you understand, the machinery module is a core part of a Cuckoo setup, therefore make sure to spend enough time
debugging your code and make it solid and resistant to any unexpected error.

Configuration

Every machinery module should come with a dedicated configuration file located in conf/<machinery module
name>.conf. For example for modules/machinery/kvm.py we have a conf/kvm.conf.

The configuration file should follow the default structure:

2.4. Customization 45

Cuckoo Sandbox Book, Release 1.0

[kvm]
Specify a comma-separated list of available machines to be used. For each
specified ID you have to define a dedicated section containing the details
on the respective machine. (E.g. cuckoo1,cuckoo2,cuckoo3)
machines = cuckoo1

[cuckoo1]
Specify the label name of the current machine as specified in your
libvirt configuration.
label = cuckoo1

Specify the operating system platform used by current machine
[windows/darwin/linux].
platform = windows

Specify the IP address of the current machine. Make sure that the IP address
is valid and that the host machine is able to reach it. If not, the analysis
will fail.
ip = 192.168.122.105

A main section called [<name of the module>] with a machines field containing a comma-separated list of
machines IDs.

For each machine you should specify a label, a platform and it’s ip.

These fields are required by Cuckoo in order to use the already embedded initialize() function that generates
the list of available machines.

If you plan to change the configuration structure you should override the initialize() function (inside your own
module, no need to modify Cuckoo’s core code). You can find it’s original code in the Machinery abstract inside
lib/cuckoo/common/abstracts.py.

LibVirt

Starting with Cuckoo 0.5 developing new machinery modules based on LibVirt is easy. Inside
lib/cuckoo/common/abstracts.py you can find LibVirtMachinery that already provides all the functionalities for
a LibVirt module. Just inherit this base class and specify your connection string, as in the example below:

1 from lib.cuckoo.common.abstracts import LibVirtMachinery
2

3 class MyMachinery(LibVirtMachinery):
4 # Set connection string.
5 dsn = "my:///connection"

This works for all the virtualization technologies supported by LibVirt. Just remember to check if your LibVirt package
(if you are using one, for example from your Linux distribution) is compiled with the support for the technology you
need.

You can check it with the following command:

$ virsh -V
Virsh command line tool of libvirt 0.9.13
See web site at http://libvirt.org/

Compiled with support for:
Hypervisors: QEmu/KVM LXC UML Xen OpenVZ VMWare Test
Networking: Remote Daemon Network Bridging Interface Nwfilter VirtualPort

46 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

Storage: Dir Disk Filesystem SCSI Multipath iSCSI LVM
Miscellaneous: Nodedev AppArmor Secrets Debug Readline Modular

If you don’t find your virtualization technology in the list of Hypervisors, you will need to recompile LibVirt with
the specific support for the missing one.

2.4.3 Analysis Packages

As explained in Analysis Packages, analysis packages are structured Python classes that describe how Cuckoo’s ana-
lyzer component should conduct the analysis procedure for a given file inside the guest environment.

As you already know, you can create your own packages and add them along with the default ones. Designing new
packages is very easy and requires just a minimal understanding of programming and of the Python language.

Getting started

As an example we’ll take a look at the default package for analyzing generic Windows executables (located at ana-
lyzer/windows/packages/exe.py):

1 from lib.common.abstracts import Package
2 from lib.api.process import Process
3 from lib.common.exceptions import CuckooPackageError
4

5 class Exe(Package):
6 """EXE analysis package."""
7

8 def start(self, path):
9 free = self.options.get("free", False)

10 args = self.options.get("arguments", None)
11 dll = self.options.get("dll", None)
12 suspended = True
13 if free:
14 suspended = False
15

16 p = Process()
17 if not p.execute(path=path, args=args, suspended=suspended):
18 raise CuckooPackageError("Unable to execute initial process, "
19 "analysis aborted")
20

21 if not free and suspended:
22 p.inject(dll)
23 p.resume()
24 p.close()
25 return p.pid
26 else:
27 return None
28

29 def check(self):
30 return True
31

32 def finish(self):
33 if self.options.get("procmemdump", False):
34 for pid in self.pids:
35 p = Process(pid=pid)
36 p.dump_memory()

2.4. Customization 47

Cuckoo Sandbox Book, Release 1.0

37

38 return True

Let’s walk through the code:

• Line 1: import the base Package class, it’s needed to define our analysis package class.

• Line 2: import the Process API class, which is used to create and manipulate Windows processes.

• Line 3: import the CuckooPackageError exception, which is used to notify issues with the execution
of the package to the analyzer.

• Line 5: define the main class, inheriting Package.

• Line 8: define the start() function, which takes as argument the path to the file to execute.

• Line 9: acquire the free option, which is used to define whether the process should be monitored or not.

• Line 10: acquire the arguments option, which is passed to the creation of the initial process.

• Line 16: initialize a Process instance.

• Line 17 and 18: try to execute the malware, if it fails it aborts the execution and notify the analyzer.

• Line 21: check if the process should be monitored.

• Line 22: inject the process with our DLL.

• Line 23: resume the process from the suspended state.

• Line 25: return the PID of the newly created process to the analyzer.

• Line 29: define the check() function.

• Line 32: define the finish() function.

• Line 33: check if the procmemdump option was enabled.

• Line 34: loop through the currently monitored processes.

• Line 35: open a Process instance.

• Line 36: take a dump of the process memory.

start()

In this function you have to place all the initialization operations you want to run. This might include running the
malware process, launching additional applications, taking memory snapshots and more.

check()

This function is executed by Cuckoo every second while the malware is running. You can use this function to perform
any kind of recurrent operation.

For example if in your analysis you are looking for just one specific indicator to be created (e.g. a file) you could place
your condition in this function and if it returns False, the analysis will terminate straight away.

Think of it as “should the analysis continue or not?”.

For example:

48 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

def check(self):
if os.path.exists("C:\\config.bin"):

return False
else:

return True

This check() function will cause Cuckoo to immediately terminate the analysis whenever C:config.bin is created.

finish()

This function is simply called by Cuckoo before terminating the analysis and powering off the machine. By default,
this function contains an optional feature to dump the process memory of all the monitored processes.

Options

Every package have automatically access to a dictionary containing all user-specified options (see Submit an Analysis).

Such options are made available in the attribute self.options. For example let’s assume that the user specified
the following string at submission:

foo=1,bar=2

The analysis package selected will have access to these values:

from lib.common.abstracts import Package

class Example(Package):

def start(self, path):
foo = self.options["foo"]
bar = self.options["bar"]

def check():
return True

def finish():
return True

These options can be used for anything you might need to configure inside your package.

Process API

The Process class provides access to different process-related features and functions. You can import it in your
analysis packages with:

from lib.api.process import Process

You then initialize an instance with:

p = Process()

In case you want to open an existing process instead of creating a new one, you can specify multiple arguments:

• pid: PID of the process you want to operate on.

• h_process: handle of a process you want to operate on.

2.4. Customization 49

Cuckoo Sandbox Book, Release 1.0

• thread_id: thread ID of a process you want to operate on.

• h_thread: handle of the thread of a process you want to operate on.

This class implements several methods that you can use in your own scripts.

Methods

Process.open()
Opens an handle to a running process. Returns True or False in case of success or failure of the operation.

Return type boolean

Example Usage:

1 p = Process(pid=1234)
2 p.open()
3 handle = p.h_process

Process.exit_code()
Returns the exit code of the opened process. If it wasn’t already done before, exit_code() will perform a
call to open() to acquire an handle to the process.

Return type ulong

Example Usage:

1 p = Process(pid=1234)
2 code = p.exit_code()

Process.is_alive()
Calls exit_code() and verify if the returned code is STILL_ACTIVE, meaning that the given process is
still running. Returns True or False.

Return type boolean

Example Usage:

1 p = Process(pid=1234)
2 if p.is_alive():
3 print("Still running!")

Process.get_parent_pid()
Returns the PID of the parent process of the opened process. If it wasn’t already done before,
get_parent_pid() will perform a call to open() to acquire an handle to the process.

Return type int

Example Usage:

1 p = Process(pid=1234)
2 ppid = p.get_parent_pid()

Process.execute(path[, args=None[, suspended=False]])
Executes the file at the specified path. Returns True or False in case of success or failure of the operation.

Parameters

• path (string) – path to the file to execute

• args (string) – arguments to pass to the process command line

• suspended (boolean) – enable or disable suspended mode flag at process creation

50 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

Return type boolean

Example Usage:

1 p = Process()
2 p.execute(path="C:\\WINDOWS\\system32\\calc.exe", args="Something", suspended=True)

Process.resume()
Resumes the opened process from a suspended state. Returns True or False in case of success or failure of
the operation.

Return type boolean

Example Usage:

1 p = Process()
2 p.execute(path="C:\\WINDOWS\\system32\\calc.exe", args="Something", suspended=True)
3 p.resume()

Process.terminate()
Terminates the opened process. Returns True or False in case of success or failure of the operaton.

Return type boolean

Example Usage:

1 p = Process(pid=1234)
2 if p.terminate():
3 print("Process terminated!")
4 else:
5 print("Could not terminate the process!")

Process.inject([dll[, apc=False]])
Injects a DLL (by default “dll/cuckoomon.dll”) into the opened process. Returns True or False in case of
success or failure of the operation.

Parameters

• dll (string) – path to the DLL to inject into the process

• apc (boolean) – enable to use QueueUserAPC() injection istead of
CreateRemoteThread(), beware that if the process is in suspended mode, Cuckoo
will always use QueueUserAPC()

Return type boolean

Example Usage:

1 p = Process()
2 p.execute(path="C:\\WINDOWS\\system32\\calc.exe", args="Something", suspended=True)
3 p.inject()
4 p.resume()

Process.dump_memory()
Takes a snapshot of the given process’ memory space. Returns True or False in case of success or failure of
the operation.

Return type boolean

Example Usage:

1 p = Process(pid=1234)
2 p.dump_memory()

2.4. Customization 51

Cuckoo Sandbox Book, Release 1.0

2.4.4 Processing Modules

Cuckoo’s processing modules are Python scripts that let you define custom ways to analyze the raw results generated
by the sandbox and append some information to a global container that will be later used by the signatures and the
reporting modules.

You can create as many modules as you want, as long as they follow a predefined structure that we will present in this
chapter.

Global Container

After an analysis is completed, Cuckoo will invoke all the processing modules available in the modules/processing/
directory. Any additional module you decide to create, must be placed inside that directory.

Every module should also have a dedicated section in the file conf/processing.conf : for example if you create a module
module/processing/foobar.py you will have to append the following section to conf/processing.conf :

[foobar]
enabled = on

Every module will then be initialized and executed and the data returned will be appended in a data structure that we’ll
call global container.

This container is simply just a big Python dictionary that includes the abstracted results produced by all the modules
classified by their identification key.

Cuckoo already provides a default set of modules which will generate a standard global container. It’s important for
the existing reporting modules (HTML report etc.) that these default modules are not modified, otherwise the resulting
global container structure would change and the reporting modules wouldn’t be able to recognize it and extract the
information used to build the final reports.

The currently available default processing modules are:

• AnalysisInfo (modules/processing/analysisinfo.py) - generates some basic information on the current anal-
ysis, such as timestamps, version of Cuckoo and so on.

• BehaviorAnalysis (modules/processing/behavior.py) - parses the raw behavioral logs and perform some
initial trasnformations and interpretations, including the complete processes tracing, a behavioral summary
and a process tree.

• Debug (modules/processing/debug.py) - includes errors and the analysis.log generated by the analyzer.

• Dropped (modules/processing/dropped.py) - includes information on the files dropped by the malware and
dumped by Cuckoo.

• Memory (modules/processing/memory.py) - executes Volatility on full memory dump.

• NetworkAnalysis (modules/processing/network.py) - prases the PCAP file and extract some network in-
formation, such as DNS traffic, domains, IPs, HTTP requests, IRC and SMTP traffic.

• StaticAnalysis (modules/processing/static.py) - performs some static analysis of PE32 files.

• Strings (modules/processing/strings.py) - extracts strings from the analyzer binary.

• TargetInfo (modules/processing/targetinfo.py) - includes information on the analyzed file, such as hashes.

• VirusTotal (modules/processing/virustotal.py) - lookup VirusTotal.com for AntiVirus signatures of the
analyzed file. Note: the file is not uploaded on VirusTotal.com, if the file was not previously uploaded on
the website no results will be retrieved.

52 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

Getting started

In order to make them available to Cuckoo, all processing modules are and should be placed inside the folder at
modules/processing/.

A basic processing module could look like:

1 from lib.cuckoo.common.abstracts import Processing
2

3 class MyModule(Processing):
4

5 def run(self):
6 self.key = "key"
7 data = do_something()
8 return data

Every processing module should contain:

• A class inheriting Processing.

• A run() function.

• A self.key attribute defining the name to be used as a subcontainer for the returned data.

• A set of data (list, dictionary or string etc.) that will be appended to the global container.

You can also specify an order value, which allows you to run the available processing modules in an ordered se-
quence. By default all modules are set with an order value of 1 and are executed in alphabetical order.

If you want to change this value your module would look like:

1 from lib.cuckoo.common.abstracts import Processing
2

3 class MyModule(Processing):
4 order = 2
5

6 def run(self):
7 self.key = "key"
8 data = do_something()
9 return data

You can also manually disable a processing module by setting the enabled attribute to False:

1 from lib.cuckoo.common.abstracts import Processing
2

3 class MyModule(Processing):
4 enabled = False
5

6 def run(self):
7 self.key = "key"
8 data = do_something()
9 return data

The processing modules are provided with some attributes that can be used to access the raw results for the given
analysis:

• self.analysis_path: path to the folder containing the results (e.g. storage/analysis/1)

• self.log_path: path to the analysis.log file.

• self.conf_path: path to the analysis.conf file.

• self.file_path: path to the analyzed file.

2.4. Customization 53

Cuckoo Sandbox Book, Release 1.0

• self.dropped_path: path to the folder containing the dropped files.

• self.logs_path: path to the folder containing the raw behavioral logs.

• self.shots_path: path to the folder containing the screenshots.

• self.pcap_path: path to the network pcap dump.

• self.memory_path: path to the full memory dump, if created.

• self.pmemory_path: path to the process memory dumps, if created.

With these attributes you should be able to easily access all the raw results stored by Cuckoo and perform your analytic
operations on them.

As a last note, a good practice is to use the CuckooProcessingError exception whenever the module encounters
an issue you want to report to Cuckoo. This can be done by importing the class like following:

1 from lib.cuckoo.common.exceptions import CuckooProcessingError
2 from lib.cuckoo.common.abstracts import Processing
3

4 class MyModule(Processing):
5

6 def run(self):
7 self.key = "key"
8

9 try:
10 data = do_something()
11 except SomethingFailed:
12 raise CuckooProcessingError("Failed")
13

14 return data

2.4.5 Signatures

With Cuckoo you’re able to create some customized signatures that you can run against the analysis results in order to
identify some predefined pattern that might represent a particular malicious behavior or an indicator you’re interested
in.

These signatures are very useful to give a context to the analyses: both because they simplify the interpretation of the
results as well as for automatically identifying malwares of interest.

Some examples you can use Cuckoo’s signatures for:

• Identify a particular malware family you’re interested in by isolating some unique behaviors (like file
names or mutexes).

• Spot interesting modifications the malware performs on the system, such as installation of device drivers.

• Identify particular malware categories, such as Banking Trojans or Ransomware by isolating typical ac-
tions commonly performed by those.

You can find signatures created by us and by other Cuckoo users on our Community repository.

Getting started

Creation of signatures is a very simple process and requires just a decent understanding of Python programming.

First thing first, all signatures are and should be located inside modules/signatures/.

A basic example signature is the following:

54 Chapter 2. Contents

https://github.com/cuckoobox/community

Cuckoo Sandbox Book, Release 1.0

1 from lib.cuckoo.common.abstracts import Signature
2

3 class CreatesExe(Signature):
4 name = "creates_exe"
5 description = "Creates a Windows executable on the filesystem"
6 severity = 2
7 categories = ["generic"]
8 authors = ["Cuckoo Developers"]
9 minimum = "0.5"

10

11 def run(self):
12 return self.check_file(pattern=".*\\.exe$",
13 regex=True)

As you can see the structure is really simple and consistent with the other modules. We’re going to get into details
later, but as you can see at line 12 from version 0.5 Cuckoo provides some helper functions that make the process of
creating signatures much easier.

In this example we just walk through all the accessed files in the summary and check if there is anything ending with
“.exe”: in that case it will return True, meaning that the signature matched, otherwise return False.

In case the signature gets matched, a new entry in the “signatures” section will be added to the global container like
following:

"signatures": [
{

"severity": 2,
"description": "Creates a Windows executable on the filesystem",
"alert": false,
"references": [],
"data": [

{
"file_name": "C:\\d.exe"

}
],
"name": "creates_exe"

}
]

We could rewrite the exact same signature by accessing the global container directly:

1 from lib.cuckoo.common.abstracts import Signature
2

3 class CreatesExe(Signature):
4 name = "creates_exe"
5 description = "Creates a Windows executable on the filesystem"
6 severity = 2
7 categories = ["generic"]
8 authors = ["Cuckoo Developers"]
9 minimum = "0.5"

10

11 def run(self):
12 for file_path in self.results["behavior"]["summary"]["files"]:
13 if file_path.endswith(".exe"):
14 return True
15

16 return False

This obviously requires you to know the structure of the global container, which you can observe represented in the

2.4. Customization 55

Cuckoo Sandbox Book, Release 1.0

JSON report of your analyses.

Creating your new signature

In order to make you better understand the process of creating a signature, we are going to create a very simple
one together and walk through the steps and the available options. For this purpose, we’re going to simply create a
signature that checks whether the malware analyzed opened a mutex named “i_am_a_malware”.

The first thing to do is import the dependencies, create a skeleton and define some initial attributes. These are the ones
you can currently set:

• name: an identifier for the signature.

• description: a brief description of what the signature represents.

• severity: a number identifying the severity of the events matched (generally between 1 and 3).

• categories: a list of categories that describe the type of event being matched (for example “banker”, “injec-
tion” or “anti-vm”).

• families: a list of malware family names, in case the signature specifically matches a known one.

• authors: a list of people who authored the signature.

• references: a list of references (URLs) to give context to the signature.

• enable: if set to False the signature will be skipped.

• alert: if set to True can be used to specify that the signature should be reported (perhaps by a dedicated
reporting module).

• minimum: the minimum required version of Cuckoo to successfully run this signature.

• maximum: the maximum required version of Cuckoo to successfully run this signature.

In our example, we would create the following skeleton:

1 from lib.cuckoo.common.abstracts import Signature
2

3 class BadBadMalware(Signature): # We initialize the class inheriting Signature.
4 name = "badbadmalware" # We define the name of the signature
5 description = "Creates a mutex known to be associated with Win32.BadBadMalware" # We provide a description
6 severity = 3 # We set the severity to maximum
7 categories = ["trojan"] # We add a category
8 families = ["badbadmalware"] # We add the name of our fictional malware family
9 authors = ["Me"] # We specify the author

10 minimum = "0.5" # We specify that in order to run the signature, the user will need at least Cuckoo 0.5
11

12 def run(self):
13 return

This is a perfectly valid signature. It doesn’t really do anything as of yet, now we need to define the conditions for the
signature to be matched.

As we said, we want to match a pecurial mutex name, so we proceed as follows:

1 from lib.cuckoo.common.abstracts import Signature
2

3 class BadBadMalware(Signature):
4 name = "badbadmalware"
5 description = "Creates a mutex known to be associated with Win32.BadBadMalware"
6 severity = 3
7 categories = ["trojan"]

56 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

8 families = ["badbadmalware"]
9 authors = ["Me"]

10 minimum = "0.5"
11

12 def run(self):
13 return self.check_mutex("i_am_a_malware")

Simple as that, now our signature will return True whether the analyzed malware was observed opening the specified
mutex.

If you want to be more explicit and directly access the global container, you could translate the previous signature in
the following:

1 from lib.cuckoo.common.abstracts import Signature
2

3 class BadBadMalware(Signature):
4 name = "badbadmalware"
5 description = "Creates a mutex known to be associated with Win32.BadBadMalware"
6 severity = 3
7 categories = ["trojan"]
8 families = ["badbadmalware"]
9 authors = ["Me"]

10 minimum = "0.5"
11

12 def run(self):
13 for mutex in self.results["behavior"]["summary"]["mutexes"]:
14 if mutex == "i_am_a_malware":
15 return True
16

17 return False

Evented Signatures

Since version 1.0, Cuckoo provides a way to write more performant signatures. In the past every signature was required
to loop through the whole collection of API calls collected during the analysis. This was necessarily causing some
performance issues when such collection would be of a large size.

Cuckoo now supports both the old model as well as what we call “evented signatures”. The main difference is that
with this new format, all the signatures will be executed in parallel and a callback function called on_call() will
be invoked for each signature within one single loop through the collection of API calls.

An example signature using this technique is the following:

1 from lib.cuckoo.common.abstracts import Signature
2

3 class SystemMetrics(Signature):
4 name = "generic_metrics"
5 description = "Uses GetSystemMetrics"
6 severity = 2
7 categories = ["generic"]
8 authors = ["Cuckoo Developers"]
9 minimum = "1.0"

10

11 # Evented signatures need to implement the "on_call" method
12 evented = True
13

14 # Evented signatures can specify filters that reduce the amount of
15 # API calls that are streamed in. One can filter Process name, API

2.4. Customization 57

Cuckoo Sandbox Book, Release 1.0

16 # name/identifier and category. These should be sets for faster lookup.
17 filter_processnames = set()
18 filter_apinames = set(["GetSystemMetrics"])
19 filter_categories = set()
20

21 # This is a signature template. It should be used as a skeleton for
22 # creating custom signatures, therefore is disabled by default.
23 # The on_call function is used in "evented" signatures.
24 # These use a more efficient way of processing logged API calls.
25 enabled = False
26

27 def stop(self):
28 # In the stop method one can implement any cleanup code and
29 # decide one last time if this signature matches or not.
30 # Return True in case it matches.
31 return False
32

33 # This method will be called for every logged API call by the loop
34 # in the RunSignatures plugin. The return value determines the "state"
35 # of this signature. True means the signature matched and False means
36 # it can’t match anymore. Both of which stop streaming in API calls.
37 # Returning None keeps the signature active and will continue.
38 def on_call(self, call, process):
39 # This check would in reality not be needed as we already make use
40 # of filter_apinames above.
41 if call["api"] == "GetSystemMetrics":
42 # Signature matched, return True.
43 return True
44

45 # continue
46 return None

The inline comments are already self-explainatory. You can find many more example of both evented and traditional
signatures in our community repository.

Helpers

As anticipated, from version 0.5 the Signature base class also provides some helper methods that simplify the
creation of signatures and avoid you from directly accessing the global container (at least most of the times).

Following is a list of available methods.

Signature.check_file(pattern[, regex=False])
Checks whether the malware opened or created a file matching the specified pattern. Returns True in case it
did, otherwise returns False.

Parameters

• pattern (string) – file name or file path pattern to be matched

• regex (boolean) – enable to compile the pattern as a regular expression

Return type boolean

Example Usage:

1 self.check_file(pattern=".*\.exe$", regex=True)

58 Chapter 2. Contents

https://github.com/cuckoobox/community

Cuckoo Sandbox Book, Release 1.0

Signature.check_key(pattern[, regex=False])
Checks whether the malware opened or created a registry key matching the specified pattern. Returns True in
case it did, otherwise returns False.

Parameters

• pattern (string) – registry key pattern to be matched

• regex (boolean) – enable to compile the pattern as a regular expression

Return type boolean

Example Usage:

1 self.check_key(pattern=".*CurrentVersion\\Run$", regex=True)

Signature.check_mutex(pattern[, regex=False])
Checks whether the malware opened or created a mutex matching the specified pattern. Returns True in case
it did, otherwise returns False.

Parameters

• pattern (string) – mutex pattern to be matched

• regex (boolean) – enable to compile the pattern as a regular expression

Return type boolean

Example Usage:

1 self.check_mutex("mutex_name")

Signature.check_api(pattern[, process=None[, regex=False]])
Checks whether Windows function was invoked. Returns True in case it was, otherwise returns False.

Parameters

• pattern (string) – function name pattern to be matched

• process (string) – name of the process performing the call

• regex (boolean) – enable to compile the pattern as a regular expression

Return type boolean

Example Usage:

1 self.check_api(pattern="URLDownloadToFileW", process="AcroRd32.exe")

Signature.check_argument(pattern[, name=Name[, api=None[, category=None[, process=None[,
regex=False]]]])

Checks whether the malware invoked a function with a specific argument value. Returns True in case it did,
otherwise returns False.

Parameters

• pattern (string) – argument value pattern to be matched

• name (string) – name of the argument to be matched

• api (string) – name of the Windows function associated with the argument value

• category (string) – name of the category of the function to be matched

• process (string) – name of the process performing the associated call

• regex (boolean) – enable to compile the pattern as a regular expression

2.4. Customization 59

Cuckoo Sandbox Book, Release 1.0

Return type boolean

Example Usage:

1 self.check_argument(pattern=".*cuckoo.*", category="filesystem", regex=True)

Signature.check_ip(pattern[, regex=False])
Checks whether the malware contacted the specified IP address. Returns True in case it did, otherwise returns
False.

Parameters

• pattern (string) – IP address to be matched

• regex (boolean) – enable to compile the pattern as a regular expression

Return type boolean

Example Usage:

1 self.check_ip("123.123.123.123")

Signature.check_domain(pattern[, regex=False])
Checks whether the malware contacted the specified domain. Returns True in case it did, otherwise returns
False.

Parameters

• pattern (string) – domain name to be matched

• regex (boolean) – enable to compile the pattern as a regular expression

Return type boolean

Example Usage:

1 self.check_domain(pattern=".*cuckoosandbox.org$", regex=True)

Signature.check_url(pattern[, regex=False])
Checks whether the malware performed an HTTP request to the specified URL. Returns True in case it did,
otherwise returns False.

Parameters

• pattern (string) – URL pattern to be matched

• regex (boolean) – enable to compile the pattern as a regular expression

Return type boolean

Example Usage:

1 self.check_url(pattern="^.+\/load\.php\?file=[0-9a-zA-Z]+$", regex=True)

2.4.6 Reporting Modules

After the analysis raw results have been processed and abstracted by the processing modules and the global container
is generated (ref. Processing Modules), it is passed over by Cuckoo to all the reporting modules available, which will
make some use of it and will make it accessible and consumable in different formats.

60 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

Getting Started

All reporting modules are and should be placed inside the directory modules/reporting/.

Every module should also have a dedicated section in the file conf/reporting.conf : for example if you create a module
module/reporting/foobar.py you will have to append the following section to conf/reporting.conf :

[foobar]
enabled = on

Every additional option you add to your section will be available to your reporting module in the self.options
dictionary.

Following is an example of a working JSON reporting module:

1 import os
2 import json
3 import codecs
4

5 from lib.cuckoo.common.abstracts import Report
6 from lib.cuckoo.common.exceptions import CuckooReportError
7

8 class JsonDump(Report):
9 """Saves analysis results in JSON format."""

10

11 def run(self, results):
12 """Writes report.
13 @param results: Cuckoo results dict.
14 @raise CuckooReportError: if fails to write report.
15 """
16 try:
17 report = codecs.open(os.path.join(self.reports_path, "report.json"), "w", "utf-8")
18 json.dump(results, report, sort_keys=False, indent=4)
19 report.close()
20 except (UnicodeError, TypeError, IOError) as e:
21 raise CuckooReportError("Failed to generate JSON report: %s" % e)

This code is very simple, it basically just receives the global container produced by the processing modules, converts
it into JSON and writes it to a file.

There are few requirements for writing a valid reporting module:

• Declare your class inheriting Report.

• Have a run() function performing the main operations.

• Try to catch most exceptions and raise CuckooReportError to notify the issue.

All reporting modules have access to some attributes:

• self.analysis_path: path to the folder containing the raw analysis results (e.g. storage/analyses/1/)

• self.reports_path: path to the folder where the reports should be written (e.g. stor-
age/analyses/1/reports/)

• self.conf_path: path to the analysis.conf file of the current analysis (e.g. stor-
age/analyses/1/analysis.conf)

• self.options: a dictionary containing all the options specified in the report’s configuration section in
conf/reporting.conf.

2.4. Customization 61

Cuckoo Sandbox Book, Release 1.0

2.5 Development

This chapter explains how to write Cuckoo’s code and how to contribute.

2.5.1 Development Notes

Git branches

Cuckoo Sandbox source code is available in our official git repository. You’ll find multiple branches which are used
for different stages of our development lifecycle.

• Development: This is where our developers commit their ongoing work for the upcoming releases. As a devel-
opment branch, this can be really unstable and sometimes even broken and not usable. Users are discouraged to
adopt this branch, this is aimed only to developers or guys with a deep knowledge into our technologies.

• Testing: When work on development branch is in a usable state and some new features or fixes are completed,
the development branch in merged into testing. This is the branch where users can get a taste of the next release.
If you want to be always up-to-date this branch is for you.

• Stable: When unstable branch is widely tested and bugs free and if all planned features has been completed, a
new stable version will be released and available here.

Release Versioning

Cuckoo releases are named using three numbers separated by dots, such as 1.2.3, where the first number is the release,
the second number is the major version, the third number is the bugfix version. The testing stage from git ends with
“-beta” and development stage with “-dev”.

Warning: If you are using a “beta” or “dev” stage, please consider that it’s not meant to be an official
release, therefore we don’t guarantee its functioning and we don’t generally provide support. If you
think you encountered a bug there, make sure that the nature of the problem is not related to your
own misconfiguration and collect all the details to be notified to our developers. Make sure to specify
which exact version you are using, eventually with your current git commit id.

Ticketing system

To submit bug reports or feature requests, please use GitHub’s Issue tracking system.

Contribute

To submit your patch just create a Pull Request from yuor GitHub fork. If you don’t now how to create a Pull Request
take a look to GitHub help.

2.5.2 Coding Style

In order to contribute code to the project, you must diligently follow the style rules describe in this chapter. Having a
clean and structured code is very important for our development lifecycle, and not compliant code will most likely be
rejected.

Essentially Cuckoo’s code style is based on PEP 8 - Style Guide for Python Code and PEP 257 – Docstring Conven-
tions.

62 Chapter 2. Contents

http://github.com/cuckoobox/cuckoo
https://github.com/cuckoobox/cuckoo/issues
https://help.github.com/articles/using-pull-requests/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0257/
http://www.python.org/dev/peps/pep-0257/

Cuckoo Sandbox Book, Release 1.0

Formatting

Copyright header

All source code files must start with the following copyright header:

Copyright (C) 2010-2014 Cuckoo Sandbox Developers.
This file is part of Cuckoo Sandbox - http://www.cuckoosandbox.org
See the file ’docs/LICENSE’ for copying permission.

Indentation

The code must have a 4-spaces-tabs indentation. Since Python enforce the indentation, make sure to configure your
editor properly or your code might cause malfunctioning.

Maximum Line Length

Limit all lines to a maximum of 79 characters.

Blank Lines

Separate the class definition and the top level function with one blank line. Methods definitions inside a class are
separated by a single blank line:

class MyClass:
"""Doing something."""

def __init__(self):
"""Initialize"""
pass

def do_it(self, what):
"""Do it.
@param what: do what.
"""
pass

Use blank lines in functions, sparingly, to isolate logic sections. Import blocks are separated by a single blank line,
import blocks are separeted from classes by one blank line.

Imports

Imports must be on separate lines. If you’re importing multiple objects from a package, use a single line:

from lib import a, b, c

NOT:

from lib import a
from lib import b
from lib import c

Always specify explicitly the objects to import:

2.5. Development 63

Cuckoo Sandbox Book, Release 1.0

from lib import a, b, c

NOT:

from lib import *

Strings

Strings must be delimited by double quotes (”).

Printing and Logging

We discourage the use of print(): if you need to log an event please use Python’s logging which is already
initialized by Cucoko.

In your module add:

import logging
log = logging.getLogger(__name__)

And use the log handle, refer to Python’s documentation.

In case you really need to print a string to standard output, use the print() function:

print("foo")

NOT the statement:

print "foo"

Checking for keys in data structures

When checking for a key in a data structure use the clause “in” instead of methods like “has_key()”, for example:

if "bar" in foo:
do_something(foo["bar"])

Exceptions

Custom exceptions must be defined in the lib/cuckoo/common/exceptions.py file or in the local module if the exception
should not be global.

Following is current Cuckoo’s exceptions chain:

.-- CuckooCriticalError
| |-- CuckooStartupError
| |-- CuckooDatabaseError
| |-- CuckooMachineError
| ‘-- CuckooDependencyError
|-- CuckooOperationalError
| |-- CuckooAnalysisError
| |-- CuckooProcessingError
| ‘-- CuckooReportError
‘-- CuckooGuestError

Beware that the use of CuckooCriticalError and its child exceptions will cause Cuckoo to terminate.

64 Chapter 2. Contents

Cuckoo Sandbox Book, Release 1.0

Naming

Custom exceptions name must prefix with “Cuckoo” and end with “Error” if it represents an unexpected malfunction.

Exception handling

When catching an exception and accessing its handle, use as e:

try:
foo()

except Exception as e:
bar()

NOT:

try:
foo()

except Exception, something:
bar()

It’s a good practice use “e” instead of “e.message”, as in the example above.

Documentation

All code must be documented in docstring format, see PEP 257 – Docstring Conventions. Additional comments may
be added in logical blocks will be results hard to understand.

Automated testing

We belive in automated testing to provide high quality code and avoid dumb bugs. When possible, all code must be
committed with proper unit tests. Particular attention must be placed when fixing bugs: it’s good practice to write unit
tests to reproduce the bug. All unit tests and fixtures are placed in the tests folder in the cuckoo root. We adopt Nose
as unit testing framework.

2.6 Final Remarks

2.6.1 Links

• www.cuckoosandbox.org

• community.cuckoosandbox.org

• github.com/cuckoobox

• www.malwr.com

2.6.2 Join the discussion

You can get in contact with Cuckoo’s developers and users through the official mailing list kindly provided by The
Honeynet Project or on IRC at the official #cuckoosandbox channel.

2.6. Final Remarks 65

http://www.python.org/dev/peps/pep-0257/
http://nose.readthedocs.org/en/latest/
http://www.cuckoosandbox.org
http://community.cuckoosandbox.org
http://github.com/cuckoobox
http://www.malwr.com
https://public.honeynet.org/mailman/listinfo/cuckoo
http://www.honeynet.org
http://www.honeynet.org

Cuckoo Sandbox Book, Release 1.0

Our mailing list is mostly intended for development discussions and sharing of ideas and bug reports. If you are
encountering an issue you can’t solve and are looking for some help, go to our Community website.

Please read the following rules before posting:

• Before posting read the mailing list archives, read the Cuckoo blog, read the documentation and Google about
your issue. Stop posting questions that have already been answered over and over everywhere.

• Posting messages saying just like “Doesn’t work, help me” are completely useless. If something is not working
report the error, paste the logs, paste the config file, paste the information on the virtual machine, paste the
results of the troubleshooting, give context. We are not wizards and we don’t have the crystal ball.

• Use a proper title. Stuff like “Doesn’t work”, “Help me”, “Error” is not a proper title.

• Tend to use pastebin.com or pastie.org and similar services to paste logs and configs: make the message more
readable.

• The community website uses Markdown syntax. So please read Markdown documentation before posting.

2.6.3 Support Us

Cuckoo Sandbox is a completely open source software, released freely to the public and developed mostly during free
time by volunteers. If you enjoy it and want to see it kept developed and updated, please consider supporting us.

We are always looking for financial support, hardware support and contributions of other sort. If you’re interested in
cooperating with us, feel free to contact us.

2.6.4 People

Cuckoo Sandbox is an open source project result of the efforts and contributions of a lot of people who enjoyed
volunteering some of their time for a greater good :).

Active Developers

Name Role Contact
Claudio nex Guarnieri Lead Developer nex at nex dot sx
Alessandro jekil Tanasi Developer alessandro at tanasi dot it
Jurriaan skier Bremer Developer jurriaanbremer at gmail dot com
Mark rep Schloesser Developer ms at mwcollect dot org

Contributors

It’s hard at this point to keep track of all individual contributions. Following is the list of people who contributed code
to our GitHub repository:

$ git shortlog -s -n
814 Nex
611 jekil
187 rep
184 nex
125 Jurriaan Bremer
70 Ivan Kirillov
65 Thorsten Sick
24 Pietro Delsante
21 Alessandro Tanasi

66 Chapter 2. Contents

http://community.cuckoosandbox.org
http://pastebin.com/
http://pastie.org/
http://daringfireball.net/projects/markdown/syntax
https://twitter.com/botherder
https://twitter.com/jekil
https://twitter.com/skier_t
https://twitter.com/repmovsb

Cuckoo Sandbox Book, Release 1.0

19 Mark Schloesser
15 David Maciejak
12 Greg Back
9 Christopher Schmitt
9 Script Kiddie
7 Hugh Pearse
6 init99
4 Adam Pridgen
4 Ben Small
3 jamu
3 z0mbiehunt3r
2 Claudio Guarnieri
2 Richard Harman
2 Thomas Penteker
2 bcyrill
2 mak
2 mt00at
1 =
1 Allen Swackhamer
1 Ben Lyon
1 Stephen DiCato
1 bladeswords
1 chort
1 jvoisin
1 vacmf

There is a number of friends who provided feedback, ideas and support during the years of development of this project,
including:

• Felix Leder

• Tillmann Werner

• Georg Wicherski

• David Watson

• Christian Seifert

2.6.5 Supporters

• The Honeynet Project

• The Shadowserver Foundation

2.6. Final Remarks 67

http://www.honeynet.org
http://www.shadowserver.org

Cuckoo Sandbox Book, Release 1.0

68 Chapter 2. Contents

INDEX

A
add_path() (built-in function), 27
add_url() (built-in function), 28

P
Process.dump_memory() (built-in function), 51
Process.execute() (built-in function), 50
Process.exit_code() (built-in function), 50
Process.get_parent_pid() (built-in function), 50
Process.inject() (built-in function), 51
Process.is_alive() (built-in function), 50
Process.open() (built-in function), 50
Process.resume() (built-in function), 51
Process.terminate() (built-in function), 51

S
Signature.check_api() (built-in function), 59
Signature.check_argument() (built-in function), 59
Signature.check_domain() (built-in function), 60
Signature.check_file() (built-in function), 58
Signature.check_ip() (built-in function), 60
Signature.check_key() (built-in function), 58
Signature.check_mutex() (built-in function), 59
Signature.check_url() (built-in function), 60

69

	Having troubles?
	FAQ

	Contents
	Introduction
	Installation
	Usage
	Customization
	Development
	Final Remarks

	Index

